Spaces:
Running
Running
File size: 15,308 Bytes
bc072c3 ff9afd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import streamlit as st
import pandas as pd
import re
import ast
import io
import os
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from pathlib import Path
import uuid
import warnings
warnings.filterwarnings("ignore")
####################################################################
### FUNCTIONS ###
####################################################################
@st.cache_data(show_spinner=True)
def initializations():
st.session_state.question = ""
st.session_state.file_dataset = "./data/gaia_subset.csv"
st.session_state.file_evaluations = "./data/gaia_evals.csv"
st.session_state.gaia = True
st.session_state.file_lib = "./data/lib.md"
st.session_state.file_sidebar = "./data/gaia_sidebar.txt"
st.session_state.dfk = str(uuid.uuid4())
#
@st.cache_data(show_spinner=True)
def get_dataset(dataset_file):
return pd.read_csv(dataset_file, sep='µ', engine='python')
#
@st.cache_data(show_spinner=True)
def get_evaluations(eval_file):
def set_eval(answer1, answer2):
answer1 = re.sub(r'\.$', '', answer1.lower()).replace(', ', ',')
answer2 = re.sub(r'\.$', '', answer2.lower()).replace(', ', ',')
return answer1 == answer2
df = pd.read_csv(eval_file, sep='µ', engine='python')
df = df.merge(st.session_state.df_dataset[['task_id', 'question', 'file_url', 'answer']],
on='task_id', how='left')
list_labels = pd.unique(df['label'])
list_questions = pd.unique(df['question'])
df['eval'] = df.apply(lambda r: set_eval(str(r['submitted_answer']),
str(r['answer'])), axis=1)
df_pivot = df.pivot(index=['task_id','question'], columns='label',
values=['eval','submitted_answer','messages'])
df_reset = df_pivot.reindex(columns=list_labels, level=1).reset_index()
df_reset['question'] = pd.Categorical(df_reset['question'],
categories=list_questions, ordered=True)
df_eval = df_reset.sort_values('question')
df_synth = df.pivot(index='question', columns='label', values='eval') \
.reindex(columns=list_labels) \
.reindex(pd.unique(df_eval['question']))
totaux = df_synth.sum(axis=0)
df_perf = totaux.reset_index().T
df_perf.columns = df_perf.iloc[0]
df_perf = df_perf.iloc[1:]
df_perf.loc["Nb correct"] = totaux
df_perf.loc["% correct"] = totaux *100 / len(df_eval)
df_perf = df_perf.iloc[1:]
return df_eval, df_synth, df_perf, list_labels
#
@st.cache_data(show_spinner=True)
def get_lib(lib_file):
lib = ''
if isinstance(lib_file, str):
lib = Path(lib_file).read_text(encoding="utf-8")
else:
lib = lib_file.read().decode("utf-8")
return lib
#
@st.cache_data(show_spinner=True)
def get_sidebar(sidebar_file):
if isinstance(sidebar_file, str):
with open(sidebar_file, "r", encoding="utf-8") as f:
lignes = f.readlines()
else:
stringio = io.StringIO(sidebar_file.read().decode("utf-8"))
lignes = stringio.readlines()
return lignes
#
def parse_messages_from_string(messages_str):
messages = []
status = True
try:
messages_match = re.search(r"'messages': \[(.*)\]", messages_str, re.DOTALL)
messages_content = messages_match.group(1)
message_splits = re.findall(r'(HumanMessage\(.*?\)|AIMessage\(.*?\)|ToolMessage\(.*?\))(?=, HumanMessage\(|, AIMessage\(|, ToolMessage\(|$)', messages_content, re.DOTALL)
for msg_str in message_splits:
# Identifier le type de message
if msg_str.startswith('HumanMessage'):
msg_type = 'HumanMessage'
elif msg_str.startswith('AIMessage'):
msg_type = 'AIMessage'
elif msg_str.startswith('ToolMessage'):
msg_type = 'ToolMessage'
else:
continue # Type inconnu, passer au suivant
# Extraire les arguments du constructeur
args_str = msg_str[len(msg_type)+1:-1] # Supprimer 'TypeMessage(' et ')'
# Convertir les arguments en dictionnaire
# Remplacer les paires clé=valeur par des paires 'clé': valeur
args_str = re.sub(r'(\w+)=', r'"\1":', args_str)
try:
args = ast.literal_eval('{' + args_str + '}')
# Créer l'objet de message approprié
if msg_type == 'HumanMessage':
message = HumanMessage(**args)
elif msg_type == 'AIMessage':
message = AIMessage(**args)
elif msg_type == 'ToolMessage':
message = ToolMessage(**args)
else:
continue
messages.append(message)
except Exception as e:
message = HumanMessage(f"*** Error parsing message: {e}")
messages.append(message)
message = HumanMessage(f"*** See the original list of messages below")
messages.append(message)
status = False
print(f"Error parsing message: {e}")
continue
except Exception as e:
print(f"Erreur lors de l'analyse du messageparse_message_from_string: {e}")
finally:
return messages, status
#
def get_details():
dfkey = st.session_state.dfk
if len(st.session_state[dfkey]) > 0:
if len(st.session_state[dfkey]["selection"]["rows"]):
num_raw = st.session_state[dfkey]["selection"]["rows"][0]
df_eval = st.session_state.df_eval
st.session_state.question = df_eval.iloc[num_raw].question.squeeze()
for i in range(0, len(st.session_state.list_labels)):
with list_tabs[i].chat_message("ai"):
if df_eval.iloc[num_raw].eval[i]:
st.markdown(str(df_eval.iloc[num_raw].submitted_answer[i])+" "+
":green-badge[:material/check: Correct]")
else:
st.markdown(str(df_eval.iloc[num_raw].submitted_answer[i]) + " " +
":orange-badge[⚠️ Needs review]")
messages, status = parse_messages_from_string(df_eval.iloc[num_raw].messages[i])
c = st.container(border=True)
c.markdown("### Message history:")
c.text("\n".join(m.pretty_repr() for m in messages))
if not status:
c.text(df_eval.iloc[num_raw].messages[i])
#print("\n".join(m.pretty_repr() for m in messages))
#
def save_uploaded_file(uploaded_file, folder="data"):
os.makedirs(folder, exist_ok=True)
save_path = os.path.join(folder, uploaded_file.name)
with open(save_path, "wb") as f:
f.write(uploaded_file.getbuffer())
return save_path
#
####################################################################
### MAIN ###
####################################################################
#--- Initializations
st.set_page_config(page_title='Agents evaluation',layout="wide",
initial_sidebar_state="auto")
initializations()
if 'question' not in st.session_state:
st.session_state.question = ""
if 'file_dataset' not in st.session_state:
st.session_state.file_dataset = "./data/gaia_subset.csv"
if 'file_evaluations' not in st.session_state:
st.session_state.file_evaluations = "./data/gaia_evals.csv"
if 'gaia' not in st.session_state:
st.session_state.gaia = True
if 'file_lib' not in st.session_state:
st.session_state.file_lib = "./data/lib.md"
if 'file_sidebar' not in st.session_state:
st.session_state.file_sidebar = "./data/gaia_sidebar.txt"
if 'dfk' not in st.session_state:
st.session_state.dfk = str(uuid.uuid4())
#--- Set title
if st.session_state.gaia:
col1, col2 = st.columns([0.4, 0.6], vertical_alignment="center")
col1.image("thumbnail.jpg")
col2.markdown("<h1 style='text-align: center; color: orange;'>GAIA subset evaluation</h1>",
unsafe_allow_html=True)
col1.link_button(":blue[More information]",
"https://huggingface.co/learn/agents-course/unit4/introduction")
pop = col2.container()
upd = col2.expander(":red[**Upload files to update app**]")
else:
st.markdown("<h1 style='text-align: center; color: orange;'>Agents evaluation</h1>",
unsafe_allow_html=True)
pop = st.container()
upd = st.expander(":red[**Upload files to update app**]")
#--- Popover
with pop.popover("### 💡 :red[**How to configure the app to use it with a different evaluation?**]",
use_container_width=True):
st.markdown("""You can modify the data the application is based on by **uploading** your own files, respecting the expected **formats**: \n
The **test dataset** must be a csv file with the **µ** separator character. The header line must contain the expected **fields**: \n
>***task id, question, file name, file url ,answer.*** \n
>*task_id, question, file_name, file_url, answer* \n
*Example of test dataset:*""")
st.code("""task_idµquestionµfile_nameµfile_urlµanswer \n
2d83110e-a098-4ebb-9987-066c06fa42d0µ".rewsna eht sa ""tfel"" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI"µµµright \n
""", language=None)
st.markdown("___")
st.markdown("""The **evaluation dataset** must also be a csv file with the **µ** separator character. The header line must contain the expected **fields**: \n
>***label of the agent, task id, agent's response, message history (a string formatted as a list of HumanMessage, AIMessage, ToolMessage from Langchain).*** \n
>*label, task_id, submitted_answer, messages* \n
*Example of evaluation dataset:*""")
st.code("""labelµtask_idµsubmitted_answerµmessages
Qwen2.5-72B-Instructµ2d83110e-a098-4ebb-9987-066c06fa42d0µrightµ"{'messages': [HumanMessage(content='.rewsna eht sa ""tfel"" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI', additional_kwargs={}, response_metadata={}, id='98460ac1-f0c0-41dc-8f32-ddf50b123a71'), AIMessage(content='The user wrote a sentence in reverse. ... There\'s no need for any tools here because this is a basic vocabulary question. ... Therefore, the final answer is ""right.""\n</think>\n\nFINAL ANSWER: right', additional_kwargs={}, response_metadata={...}, 'model_name': 'Qwen/Qwen3-235B-A22B', ...}, ..."
""", language=None)
st.markdown("___")
st.markdown("""You can also set your **title** and your **sidebar** by **uploading** appropriate files: \n
* a md or txt file for the title. \n
*Example:*""")
st.code("""*GAIA is a benchmark which aims at ...*
***Data***
*GAIA is made of more than 450 non-trivial question with an unambiguous answer, ...*
""", language=None)
st.markdown("""* a text file describing, in markdown, the section titles and tool descriptions. \n
*Example:*""")
st.code("""title;:orange[Langchain tools]
tool;:material/language: TavilySearch
tool;:material/newsstand: WikipediaQueryRun
title;:orange[Custom tools]
tool;:material/slideshow: Ask Youtube video
tool;:material/chess: Chessboard description
tool;:material/speech_to_text: Audio transcription
tool;:material/text_snippet: Get file content
tool;:material/add: Sum numbers
""", language=None)
#--- Update app configuration
with upd.form(":red[**Update app**]"):
uploaded_dataset = st.file_uploader("Choose the **dataset** file:", type='csv')
uploaded_evaluations = st.file_uploader("Choose the **evaluation**s file:", type='csv')
uploaded_lib = st.file_uploader("Choose the file with the dataset **description**:", type=['md', 'txt'])
uploaded_sidebar = st.file_uploader("Choose the file with the **sidebar** description:", type=['md', 'txt'])
valid = st.form_submit_button("🚀 :red[**Update app**]")
if valid:
if uploaded_lib is not None:
st.session_state.gaia = False
st.session_state.file_lib = uploaded_lib
if uploaded_dataset is not None:
st.session_state.file_dataset = uploaded_dataset
st.session_state.question = ""
if uploaded_evaluations is not None:
st.session_state.file_evaluations = save_uploaded_file(uploaded_evaluations)
print('fichier sauvegardé : ', st.session_state.file_evaluations)
st.session_state.dfk = str(uuid.uuid4())
st.session_state.question = ""
if 'list_tabs' in locals():
del list_tabs
if uploaded_sidebar is not None:
st.session_state.file_sidebar = uploaded_sidebar
#--- Get dataset information
try:
st.session_state.lib = get_lib(st.session_state.file_lib)
except Exception as e:
st.exception(f'Error during get_lib: {e}')
#--- Get sidebar description
try:
st.session_state.lignes = get_sidebar(st.session_state.file_sidebar)
except Exception as e:
st.exception(f'Error during get_sidebar: {e}')
#--- Set sidebar
try:
with st.sidebar:
st.markdown("# :material/construction: Tools used")
for ligne in st.session_state.lignes:
lig = ligne.split(";")
if lig[0] == 'title':
st.markdown("## "+lig[1])
if lig[0] == 'tool':
with st.container(border=True):
st.markdown("### "+lig[1])
except Exception as e:
st.exception(f'Error during set sidebar: {e}')
#--- Get dataset
try:
st.session_state.df_dataset = get_dataset(st.session_state.file_dataset)
except Exception as e:
st.exception(f'Error during get_dataset: {e}')
#--- Get evaluations
try:
st.session_state.df_eval, st.session_state.df_synth, st.session_state.df_perf, \
st.session_state.list_labels = get_evaluations(st.session_state.file_evaluations)
except Exception as e:
st.exception(f'Error during get_evaluations: {e}')
#--- Show dataset expander
with st.expander("## **:orange[Dataset informations]**", expanded=False):
try:
st.markdown(">"+st.session_state.lib)
st.markdown("#### Test dataset:")
st.dataframe(st.session_state.df_dataset[['question', 'file_url']],
column_config={"file_url": st.column_config.LinkColumn("Attached file",
display_text="Download attached file"),
"question": st.column_config.TextColumn(max_chars=None)})
except Exception as e:
st.exception(f'Error in dataset informations: {e}')
#--- Show perf dataframe
st.dataframe(st.session_state.df_perf)
#--- Show evaluations synthesys
st.markdown("👇 Click to the left of the question to obtain details of the different model evaluations")
st.dataframe(st.session_state.df_synth, on_select=get_details, key=st.session_state.dfk,
selection_mode="single-row")
#--- Details container
cont = st.container()
with cont.chat_message('user'):
st.markdown(f'###### :blue[{st.session_state.question}]')
cols = [''.join(col).strip() for col in st.session_state.list_labels]
list_tabs = cont.tabs(cols) |