File size: 52,156 Bytes
c957723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
import streamlit as st
import cv2
import imutils
from paddleocr import PaddleOCR, draw_ocr
from PIL import Image
import io
import os
import numpy as np
import ast
import operator
import matplotlib.pyplot as plt


os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

st.markdown("""

    <style>

        .main > div:first-of-type {

            padding: 1em 2em 2em 2em;

        }

    </style>

""", unsafe_allow_html=True)

###################################################################################################
##   INITIALISATIONS
###################################################################################################
###
@st.cache_data(show_spinner=True)
def initializations():
    print("Initializations ...")
    out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \
    'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
    'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \
    'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \
    'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \
    'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \
    'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \
    'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \
    'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \
    'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \
    'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \
    'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \
    'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \
    'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \
    'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
    'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}

    out_dict_interpolation = {"INTER_LINEAR": cv2.INTER_LINEAR,
                              "INTER_NEAREST": cv2.INTER_NEAREST,
#                              "INTER_LINEAR_EXACT": cv2.INTER_LINEAR_EXACT,
                              "INTER_AREA": cv2.INTER_AREA,
                              "INTER_CUBIC": cv2.INTER_CUBIC,
                              "INTER_LANCZOS4": cv2.INTER_LANCZOS4,
#                              "INTER_NEAREST_EXACT": cv2.INTER_NEAREST_EXACT,
#                              "INTER_MAX": cv2.INTER_MAX,
#                              "WARP_FILL_OUTLIERS": cv2.WARP_FILL_OUTLIERS,
#                              "WARP_INVERSE_MAP": cv2.WARP_INVERSE_MAP,
                             }

    out_dict_thresholding_type = {"THRESH_BINARY": cv2.THRESH_BINARY,
                                  "THRESH_BINARY_INV": cv2.THRESH_BINARY_INV,
                                  "THRESH_TRUNC": cv2.THRESH_TRUNC,
                                  "THRESH_TOZERO": cv2.THRESH_TOZERO,
                                 }

    out_dict_adaptative_method = {"ADAPTIVE_THRESH_MEAN_C": cv2.ADAPTIVE_THRESH_MEAN_C,
                                  "ADAPTIVE_THRESH_GAUSSIAN_C": cv2.ADAPTIVE_THRESH_GAUSSIAN_C}

    return out_dict_lang_ppocr, out_dict_interpolation, out_dict_thresholding_type, out_dict_adaptative_method

###################################################################################################
##   FONTIONS
###################################################################################################
###
@st.cache_data(show_spinner=False)
def load_image(in_image_file):
    """Load input file and open it

    Args:

        in_image_file (string or Streamlit UploadedFile): image to consider

    Returns:

        matrix      : input file opened with Opencv

    """
    #if isinstance(in_image_file, str):
    #    out_image_path = "img."+in_image_file.split('.')[-1]
    #else:
    #    out_image_path = "img."+in_image_file.name.split('.')[-1]
    if isinstance(in_image_file, str):
        out_image_path = "tmp_"+in_image_file
    else:
        out_image_path = "tmp_"+in_image_file.name
    img = Image.open(in_image_file)
    img_saved = img.save(out_image_path)
    # Read image
#    out_image_orig = Image.open(out_image_path)
    out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)

    st.session_state.resize = False
    st.session_state.scaling_factor = None
    st.session_state.interpolation = None
    st.session_state.rotate = None
    st.session_state.angle = None
    st.session_state.convolution = None
    st.session_state.text_convol = None
    st.session_state.convol_kernel = None
    st.session_state.averaging = None
    st.session_state.averaging_kernel_size = None
    st.session_state.gaussian_bluring = None
    st.session_state.gb_kernel_size = None
    st.session_state.sigmaX = None
    st.session_state.sigmaY = None
    st.session_state.median_bluring = None
    st.session_state.mb_kernel_size = None
    st.session_state.bilateral_filtering = None
    st.session_state.d = None
    st.session_state.sigma_color = None
    st.session_state.sigma_space = None
    st.session_state.erosion = None
    st.session_state.erosion_kernel_size = None
    st.session_state.nb_iter_erosion = None
    st.session_state.dilation = None
    st.session_state.dilation_kernel_size = None
    st.session_state.nb_iter_dilation = None
    st.session_state.binarization = None
    st.session_state.bin_thresh = None
    st.session_state.bin_thresh = None
    st.session_state.bin_thresholding_type = None
    st.session_state.bin_otsu = None
    st.session_state.thresh_typ = None
    st.session_state.adaptative_thresh = None
    st.session_state.at_thresholding_type = None
    st.session_state.at_max_value = None
    st.session_state.at_adaptative_method = None
    st.session_state.at_block_size = None
    st.session_state.at_const = None
    st.session_state.processed_image = None

    return out_image_cv2, out_image_path
###
def eval_expr(expr):
    """Eval numeric expression

    Args:

        expr (string): numeric expression

    Returns:

       float: eval result

    """
    result = 1.
    # Dictionnary of authorized operators
    operators = {
        ast.Add: operator.add,
        ast.Sub: operator.sub,
        ast.Mult: operator.mul,
        ast.Div: operator.truediv,
        ast.Pow: operator.pow,
        ast.USub: operator.neg,
    }
    def _eval(node):
        if isinstance(node, ast.Expression):
            return _eval(node.body)
        elif isinstance(node, ast.Constant):  # nombre
            return node.value
        elif isinstance(node, ast.BinOp):  # opΓ©rations binaires
            return operators[type(node.op)](_eval(node.left), _eval(node.right))
        elif isinstance(node, ast.UnaryOp):  # opΓ©rations unaires (-n)
            return operators[type(node.op)](_eval(node.operand))
        else:
            raise TypeError(node)
    try:
        parsed = ast.parse(expr, mode='eval')
        result = _eval(parsed.body)
    except:
        pass
    return result
###
def text_kernel_to_latex(text_eval):
    """Try to parse a kernel text description like: 1/6 * [[1,1],[1,1]]

    Args:

        text_eval (string): the string with the kernel expression

    Returns:

       string: left part of input string before *

       list: right part of input string after *

       string: latex expression corresponding to the text kernel input

    """
    list_eval = text_eval.split('*')
    text_kernel = list_eval[-1].strip()
    list_kernel = ast.literal_eval(text_kernel)
    latex = "\\begin{bmatrix}\n"
    for row in list_kernel:
        latex += " & ".join(map(str, row)) + " \\\\\n"
    latex += "\\end{bmatrix}"
    text_coeff = 1.
    latex_text = latex
    if len(list_eval) > 1:
        text_coeff = list_eval[0].strip()
        latex_text = text_coeff + ' ' + latex
    return text_coeff, list_kernel, latex_text
###
def get_img_fig(img):
    """Plot image with matplotlib, in order to have image size

    Args:

        img (Image): Image to show

    Returns:

        Matplotlib figure

    """
    fig = plt.figure()
    if len(img.shape) == 3:
        plt.imshow(img, cmap=None)
    else:
        plt.imshow(img, cmap='gray')
    return fig

@st.fragment
def show_latex(latex_code):
    st.latex(latex_code)
###################################################################################################
##   STREAMLIT APP
###################################################################################################
st.title(''':orange[Image check and enhance for OCR task]''')
st.write("")
st.write("")
st.write("")
st.set_option("client.showErrorDetails", False)

dict_lang_ppocr, dict_interpolation, dict_thresholding_type, dict_adaptative_method = initializations()

cols = st.columns([0.25, 0.25, 0.5])
cols[0].markdown("#### :orange[Choose picture:]")
img_typ = cols[0].radio("#### :orange[Choose picture type:]", ['Upload file', 'Take a picture', 'Use a demo file'], \
                            index=0)
if img_typ == 'Upload file':
    image_file = cols[1].file_uploader("Upload a file:", type=["png","jpg","jpeg"])

if img_typ == 'Take a picture':
    image_file = cols[1].camera_input("Take a picture:")
if img_typ == 'Use a demo file':
    image_file = 'img_demo_enhance.png'

##----------- Process input image -----------------------------------------------------------------
if image_file is not None:
    img_cv2, image_path = load_image(image_file)

    cols[2].markdown('#### :orange[Original image]')
    cnt_img_ori = cols[2].container(height=300, border=False)
    #cnt_img_ori.image(img_cv2) #, use_container_width=True)
    cnt_img_ori.pyplot(get_img_fig(img_cv2))
    col1, col2 = st.columns([0.5, 0.5]) #gap="medium")

    col1.markdown('#### :orange[Processed image]')
    list_op = []

    if col1.checkbox("GrayScale"):
        try:
            img_first = cv2.cvtColor(img_cv2.copy(), cv2.COLOR_BGR2GRAY)
            list_op.append("Grayscale")
        except Exception as e:
            st.exception(e)
    else:
        img_first = img_cv2.copy()

    if col1.checkbox("Bit-wise inversion"):
        try:
            img_first = cv2.bitwise_not(img_first)
            list_op.append("Bit-wise inversion")
        except Exception as e:
            st.exception(e)

    # Processed image construction
    cnt_img_wrk = col1.container(height=500, border=False)
    img_processed = cnt_img_wrk.empty()
    img_wrk = img_first.copy()

    if st.session_state.resize:
        try:
            img_wrk = cv2.resize(img_wrk, None, fx=st.session_state.scaling_factor,
                                 fy=st.session_state.scaling_factor,
                                 interpolation=dict_interpolation[st.session_state.interpolation])
            list_op.append("Resize - fx="+str(st.session_state.scaling_factor)+", fy="+
                           str(st.session_state.scaling_factor)+", interpolation="+
                           st.session_state.interpolation)
        except Exception as e:
            st.exception(e)

    if st.session_state.rotate:
        try:
            img_wrk = imutils.rotate(img_wrk, angle=st.session_state.angle)
            list_op.append("Rotate - angle="+str(st.session_state.angle))
        except Exception as e:
            st.exception(e)

    if st.session_state.convolution:
        try:
            img_wrk = cv2.filter2D(src=img_wrk, ddepth=-1, kernel=st.session_state.convol_kernel)
            list_op.append("Filtering - Custom 2D Convolution - kernel="+ st.session_state.text_convol)
        except Exception as e:
            st.exception(e)

    if st.session_state.averaging:
        try:
            img_wrk = cv2.blur(src=img_wrk, ksize=st.session_state.averaging_kernel_size)
            list_op.append("Filtering - Averaging - kernel_size="+
                           str(st.session_state.averaging_kernel_size))
        except Exception as e:
            st.exception(e)

    if  st.session_state.gaussian_bluring:
        try:
            img_wrk = cv2.GaussianBlur(src=img_wrk, ksize=st.session_state.gb_kernel_size, \
                                    sigmaX=st.session_state.sigmaX, sigmaY=st.session_state.sigmaY)
            list_op.append("Filtering - Gaussian Blurring - ksize="+ \
                        str(st.session_state.gb_kernel_size)+", sigmaX="+
                        str(st.session_state.sigmaX)+", sigmaY="+str(st.session_state.sigmaY))
        except Exception as e:
            st.exception(e)

    if st.session_state.median_bluring:
        try:
            img_wrk = cv2.medianBlur(img_wrk, st.session_state.mb_kernel_size)
            list_op.append("Filtering - Median Blurring - kernel_size="+ \
                           str(st.session_state.mb_kernel_size))
        except Exception as e:
            st.exception(e)

    if st.session_state.bilateral_filtering:
        try:
            img_wrk = cv2.bilateralFilter(img_wrk, st.session_state.d, st.session_state.sigma_color,
                                         st.session_state.sigma_space)
            list_op.append("Filtering - Bilateral Filtering - d="+ str(st.session_state.d)+
                           ", sigma_color="+str(st.session_state.sigma_color)+ \
                           ", sigma_space="+str(st.session_state.sigma_space))
        except Exception as e:
            st.exception(e)

    if st.session_state.erosion:
        try:
            kernel = np.ones((st.session_state.erosion_kernel_size,
                              st.session_state.erosion_kernel_size),
                             np.uint8)
            img_wrk = cv2.erode(img_wrk, kernel, iterations=st.session_state.nb_iter_erosion)
            list_op.append("Erosion - kernel_size="+str(st.session_state.erosion_kernel_size)+ \
                           ", iterations="+str(st.session_state.nb_iter_erosion))
        except Exception as e:
            st.exception(e)

    if st.session_state.dilation:
        try:
            kernel = np.ones((st.session_state.dilation_kernel_size,
                              st.session_state.dilation_kernel_size),
                             np.uint8)
            img_wrk = cv2.dilate(img_wrk, kernel, iterations=st.session_state.nb_iter_dilation)
            list_op.append("Dilation - kernel_size="+str(st.session_state.dilation_kernel_size )+ \
                           ", iterations="+str(st.session_state.nb_iter_dilation))
        except Exception as e:
            st.exception(e)

    if st.session_state.binarization:
        try:
            ret, img_wrk = cv2.threshold(img_wrk, st.session_state.bin_thresh,
                                         st.session_state.bin_value,
                                         st.session_state.thresh_typ)
            list_op.append("Thresholding - thresh="+str(st.session_state.bin_thresh)+ \
                           ", maxval="+str(st.session_state.bin_value)+", type="+ \
                           st.session_state.bin_thresholding_type+", otsu="+ \
                           str(st.session_state.bin_otsu))
        except Exception as e:
            st.exception(e)

    if st.session_state.adaptative_thresh:
        try:
            img_wrk = cv2.adaptiveThreshold(img_wrk, st.session_state.at_max_value,
                                dict_adaptative_method[st.session_state.at_adaptative_method],
                                dict_thresholding_type[st.session_state.at_thresholding_type],
                                st.session_state.at_block_size, st.session_state.at_const)
            list_op.append("Adaptative thresholding - maxValue="+
                           str(st.session_state.at_max_value)+", adaptiveMethod="+
                           st.session_state.at_adaptative_method+", thresholdType"+
                           ", thresholding_type="+st.session_state.at_thresholding_type+
                           ", blockSize="+str(st.session_state.at_block_size)+", C="+
                           str(st.session_state.at_const))
        except Exception as e:
            st.exception(e)

    # Show image
    img_processed.pyplot(get_img_fig(img_wrk))
    st.session_state.processed_image = img_wrk

    # Process
    col2.markdown('#### :orange[Check & enhance]')

    with col2.expander(":blue[Image processing]", expanded=False):
        tab1, tab2, tab3, tab4, tab5 = \
                st.tabs(["Resize", "Rotate", "Filtering",
                          "Morphologie", "Thresholding"])
        with tab1: # Resize
            with tab1.form("Resize parameters"):
                st.session_state.scaling_factor = st.slider("Scaling factor :", 0.1, 20., 1., 0.1)
                cols_tab1 = st.columns([0.1, 0.9], gap="medium", vertical_alignment="center")
                cols_tab1[0].markdown("πŸ’¬", help="""An interpolation function’s goal is

        to examine neighborhoods of pixels and use these neighborhoods to optically increase or decrease

        the size of the image without introducing distortions (or at least as few distortions

        as possible).\n

        ```cv2.INTER_LINEAR``` This option uses the bilinear interpolation algorithm. Unlike INTER_NEAREST,

        this does the interpolation in two dimensions and predicts the function used to calculate the color

        of a pixel. This algorithm is effective in handling visual distortions while zooming or

        enlarging an image.\n

        ```cv2.INTER_NEAREST``` This option uses the nearest neighbor interpolation algorithm. It retains

        the sharpness of the edges though the overall image may be blurred.\n

        ```cv2.INTER_LINEAR_EXACT```is a modification of ```INTER_LINEAR``` and both uses bilinear

        interpolation algorithm. The only difference is that the calculations in ```INTER_LINEAR_EXACT```

        are accurate to a bit.\n

        ```cv2.INTER_AREA``` option uses resampling using pixel area relation technique. While enlarging

        images, INTER_AREA work same as INTER_NEAREST. In other cases, ```INTER_AREA works``` better in

        image decimation and avoiding false inference patterns in images (moire pattern).\n

        ```cv2.INTER_CUBIC``` option uses bicubic interpolation technique. This is an extension of cubic

        interpolation technique and is used for 2 dimension regular grid patterns.\n

        ```cv2.INTER_LANCZOS4``` option uses Lanczos interpolation over 8 x 8 pixel neighborhood technique.

        It uses Fourier series and Chebyshev polynomials and is suited for images with large number of

        small size details.\n

        ```cv2.INTER_NEAREST_EXACT ``` is a modification of INTER_NEAREST with bit level accuracy.\n

        ```cv2.INTER_MAX ``` option uses mask for interpolation codes.\n

        ```cv2.WARP_FILL_OUTLIERS ``` interpolation technique skips the outliers during interpolation calculations.\n

        ```cv2.WARP_INVERSE_MAP ``` option uses inverse transformation technique for interpolation.\n""")
                cols_tab1[0].link_button("πŸ“š", "https://opencv.org/blog/resizing-and-rescaling-images-with-opencv/#h-resizing-with-different-interpolation-methods")
                st.session_state.interpolation = cols_tab1[1].selectbox("Interpolation method:",
                                                            list(dict_interpolation.keys()))
                c1, c2 = st.columns(2)
                apply_tab1 = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=1)
                with c2:
                    submit_tab1 = st.form_submit_button(":green[Confirm]")

            if submit_tab1:
                st.session_state.resize = apply_tab1
                st.rerun()

        with tab2: # Rotate
            with tab2.form("Rotate parameters"):
                st.session_state.angle = st.slider("Angle :", 0, 360, 0, step=10)
                c1, c2 = st.columns(2)
                apply_tab2 = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=2)
                with c2:
                    submit_tab2 = st.form_submit_button(":green[Confirm]")

            if submit_tab2:
                st.session_state.rotate = apply_tab2
                st.rerun()

        with tab3: # Filtering
            st.write("πŸ“š :blue[*More about image filtering*]  πŸ‘‰  \

                        [here](https://learnopencv.com/image-filtering-using-convolution-in-opencv/)")
            selection = st.segmented_control("Filtering type",
                                            ["Custom 2D Convolution", "Blurring"],
                                            selection_mode="single")
            match selection:
                case "Custom 2D Convolution":
                    with st.form("tab3_1"):
                        st.write("πŸ“š :blue[*More about convolution matrix*]  πŸ‘‰  \

                                    [here](https://en.wikipedia.org/wiki/Kernel_(image_processing))")
                        text_convol = st.text_input("Write your custom kernel here (example : 1/9 * [[1,1,1], [1,1,1], [1,1,1]]):",
                                                    value=None)
                        kernel = None
                        if text_convol is not None:
                            try:
                                text_coeff, list_kernel, latex_code = text_kernel_to_latex(text_convol)
                                coeff = eval_expr(text_coeff)
                                kernel = coeff * np.array(list_kernel)
                                show_latex(latex_code)
                            except Exception as e:
                                st.exception(e)
                                text_convol = None
                        else:
                            text_coeff, list_kernel, latex_code = \
                                        text_kernel_to_latex("1/9 * [[1,1,1], [1,1,1], [1,1,1]]")
                            show_latex(latex_code)

                        c1, c2 = st.columns(2)
                        apply_tab31 = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=3)
                        with c2:
                            submit_tab31 = st.form_submit_button(":green[Confirm]")

                    if submit_tab31:
                        st.session_state.convolution = apply_tab31
                        st.session_state.text_convol = text_convol
                        st.session_state.convol_kernel = kernel
                        st.rerun()

                case "Blurring":
                    st.write("πŸ“š :blue[*More about blurring techniques*]  πŸ‘‰  \

                                [here](https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html)")
                    b1, b2, b3, b4 = st.tabs(["Averaging", "Gaussian Blurring", "Median Blurring",
                                        "Bilateral Filtering"])
#                    typ_blurring = st.segmented_control("Bluring type",
#                                        ["Averaging", "Gaussian Blurring", "Median Blurring",
#                                        "Bilateral Filtering"],
#                                        selection_mode="multi")

                    with b1:
                        with st.form("tab_32a"):
                            st.markdown("πŸ’¬ :green[Averaging?]",
                                            help="This is done by convolving an image with a normalized box filter.\

                                        It simply takes the average of all the pixels under the kernel \

                                        area and replaces the central element."
                                           )
                            kernel_width = st.slider("Kernel size width:", 2, 20, None, 1)
                            kernel_height = st.slider("Kernel size height:", 2, 20, None, 1)

                            c1, c2 = st.columns(2)
                            apply_tab32a = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=4)
                            with c2:
                                submit_tab32a = st.form_submit_button(":green[Confirm]")

                        if submit_tab32a:
                            st.session_state.averaging = apply_tab32a
                            st.session_state.averaging_kernel_size = (kernel_width, kernel_height)
                            st.rerun()

                    with b2:
                        with st.form("tab_32b"):
                            st.markdown("πŸ’¬ :green[Gaussian Blurringing?]",
                                                help="In this method, instead of a box filter, a Gaussian kernel is used. \

    We should specify the width and height of the kernel which should be positive and odd. \

    We also should specify the standard deviation in the X and Y directions, `sigmaX` and `sigmaY` respectively. \

    If only `sigmaX` is specified, `sigmaY` is taken as the same as sigmaX. If both are given as zeros, they are \

    calculated from the kernel size.\n \

    Gaussian blurring is highly effective in removing Gaussian noise from an image.")
                            kernel_width = st.slider("Kernel size width:", 2, 20, None, 1,)
                            kernel_height = st.slider("Kernel size height:", 2, 20, None, 1)
                            st.markdown("Standard deviations of the Gaussian kernel:",
                                        help="""The parameters `sigmaX` and `sigmaY` represent the standard deviations

                                                    of the Gaussian kernel in the horizontal (X) and vertical (Y) directions,

                                                    respectively. These values control the extent of blurring applied to the image.​\n

    **Typical Values for sigmaX and sigmaY:**

    - Low values (e.g., 1–3): Apply a mild blur, useful for slight noise reduction while preserving image details.​

    - Moderate values (e.g., 5–10): Produce a more noticeable blur, helpful for reducing more significant noise or smoothing out textures.

    - High values (e.g., >10): Result in a strong blur, which can be used for artistic effects or to obscure details.​

    It's common practice to set sigmaX and sigmaY to 0. In this case, OpenCV calculates the standard deviations based on the kernel size (ksize).

    If only sigmaX is specified and sigmaY is set to 0, OpenCV uses the same value for both directions. ​\n

    **Recommendations:**

    - Specify sigmaX and sigmaY explicitly: For precise control over the blurring effect, define both parameters based on the desired outcome.​

    - Use sigmaX = 0 and sigmaY = 0: To allow OpenCV to compute the standard deviations automatically from the kernel size.​

    - Choose an appropriate kernel size: The ksize parameter should be a tuple of positive odd integers (e.g., (3, 3), (5, 5)).

                        """)
                            sigmaX = st.slider("sigmaX:", 0, 20, 0, 1)
                            sigmaY = st.slider("sigmaY:", 0, 20, 0, 1)

                            c1, c2 = st.columns(2)
                            apply_tab32b = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=5)
                            with c2:
                                submit_tab32b = st.form_submit_button(":green[Confirm]")

                        if submit_tab32b:
                            st.session_state.gaussian_bluring = apply_tab32b
                            st.session_state.gb_kernel_size = (kernel_width, kernel_height)
                            st.session_state.sigmaX = sigmaX
                            st.session_state.sigmaY = sigmaY
                            st.rerun()

                    with b3:
                        with st.form("tab_32c"):
                            st.markdown("πŸ’¬ :green[Median Blurring?]",
                                            help="It takes the median of all the pixels under the \

    kernel area and the central element is replaced with this median value.  Interestingly, in the above \

    filters, the central element is a newly calculated value which may be a pixel value in the image or a new value. \

    But in median blurring, the central element is always replaced by some pixel value in the image. \

    It reduces the noise effectively. Its kernel size should be a positive odd integer.\n \

    Median blurring is highly effective against salt-and-pepper noise in an image.")
                            kernel_size = st.slider("Kernel size:", 3, 15, None, 2, key=101)

                            c1, c2 = st.columns(2)
                            apply_tab32c = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=6)
                            with c2:
                                submit_tab32c = st.form_submit_button(":green[Confirm]")

                        if submit_tab32c:
                            st.session_state.median_bluring = apply_tab32c
                            st.session_state.mb_kernel_size = kernel_size
                            st.rerun()

                    with b4:
                        with st.form("tab_32d"):
                            st.markdown("πŸ’¬ :green[Bilateral Filtering?]",
                                        help="It is highly effective in noise removal while \

    keeping edges sharp. But the operation is slower compared to other filters. We already saw that a \

    Gaussian filter takes the neighbourhood around the pixel and finds its Gaussian weighted average. \

    This Gaussian filter is a function of space alone, that is, nearby pixels are considered while \

    filtering. It doesn't consider whether pixels have almost the same intensity. It doesn't consider \

    whether a pixel is an edge pixel or not. So it blurs the edges also, which we don't want to do.\n \

    Bilateral filtering also takes a Gaussian filter in space, but one more Gaussian filter which is \

    a function of pixel difference. \

    The Gaussian function of space makes sure that only nearby pixels are considered for blurring, \

    while the Gaussian function of intensity difference makes sure that only those pixels with similar \

    intensities to the central pixel are considered for blurring. \

    So it preserves the edges since pixels at edges will have large intensity variation.")
                            st.markdown("Diameter of each pixel neighborhood that is used during filtering:",
                                        help=""" **Effect:**\n

    A larger `d` value means that more neighboring pixels are considered in the filtering process, leading to a more pronounced

    blurring effect. Conversely, a smaller `d` focuses the filter on a tighter area, preserving more details.​

    **Automatic Calculation:**\n

    If `d` is set to a non-positive value (e.g., 0 or negative), OpenCV automatically calculates it based on the sigmaSpace parameter.

    Specifically, the radius is computed as `radius = cvRound(sigmaSpace * 1.5)`, and then `d = radius * 2 + 1` to ensure it's an odd

    number. This ensures that the kernel has a central pixel. ​

    **Typical Values for `d`:**\n

    The choice of d depends on the desired balance between noise reduction and edge preservation:​

    - Small d (e.g., 5 to 9): Suitable for subtle smoothing while maintaining edge sharpness.​

    - Medium d (e.g., 9 to 15): Offers a balance between noise reduction and detail preservation.​

    - Large d (e.g., 15 and above): Provides stronger blurring, which may be useful for artistic effects but can lead to loss of

    fine details.​

    **Recommendations:**\n

    - Large filters (d > 5) are very slow, so it is recommended to use `d=5` for real-time applications, and perhaps

    `d=9` for offline applications that need heavy noise filtering.

    - Start with Moderate Values: Begin with `d=9`, `sigmaColor=75`, and `sigmaSpace=75` as a baseline. Adjust these values based on

    the specific requirements of your application.​

    - Consider Image Size: For larger images, you might need to increase `d` to achieve a noticeable effect. Conversely,

    for smaller images, a smaller `d` might suffice.​

    - Balance with `sigmaColor` and `sigmaSpace`: Ensure that `d` is appropriately balanced with `sigmaColor` and

    `sigmaSpace`. An excessively large `sigmaSpace` with a small `d` might not utilize the full potential of the spatial filtering.

                                                """)
                            d_value = st.slider("d:", 3, 15, None, 2)
                            st.markdown("`sigmaColor` and `sigmaSpace`:", help="""

    `sigmaColor`: This parameter defines the filter sigma in the color space. A larger value means that pixels with more significant

    color differences will be mixed together, resulting in areas of semi-equal color.​

    `sigmaSpace`: This parameter defines the filter sigma in the coordinate space. A larger value means that pixels farther apart

    will influence each other as long as their colors are close enough.​\n

    These parameters work together to ensure that the filter smooths the image while preserving edges.​

    **Typical Values for `sigmaColor` and `sigmaSpace`:**\n

    The choice of `sigmaColor` and `sigmaSpace` depends on the specific application and the desired effect.

    However, some commonly used values are:​

    - `sigmaColor`: Values around 75 are often used for general smoothing while preserving edges.​

    - `sigmaSpace`: Similarly, values around 75 are typical for maintaining edge sharpness while reducing noise.​

    For example, applying the bilateral filter with `d=9`, `sigmaColor=75`, and `sigmaSpace=75` is a common practice.

    **Recommendations:**`\n

    - Start with Equal Values: Setting `sigmaColor` and `sigmaSpace` to the same value (e.g., 75) is a good starting point.​

    - Adjust Based on Results: If the image appears too blurred, reduce the values. If noise is still present, increase them.​

    - Consider Image Characteristics: For images with high noise, higher values may be necessary. For images where edge preservation

    is critical, lower values are preferable.""")
                            sigma_color = st.slider("sigmaColor", 1, 255, None, 1)
                            sigma_space = st.slider("sigmaSpace", 1, 255, None, 1)

                            c1, c2 = st.columns(2)
                            apply_tab32d = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=7)
                            with c2:
                                submit_tab32d = st.form_submit_button(":green[Confirm]")

                        if submit_tab32d:
                            st.session_state.bilateral_filtering = apply_tab32d
                            st.session_state.d = d_value
                            st.session_state.sigma_color = sigma_color
                            st.session_state.sigma_space = sigma_space
                            st.rerun()

        with tab4: # Morphologie
            list_select = st.segmented_control("Morphological operation:",
                                              ["Erosion", 'Dilation'],
                                              selection_mode="multi")
            if "Erosion" in list_select:
                with st.form("tab_4a"):
                    st.markdown("πŸ’¬ :green[Erosion?]",
                                    help="The basic idea of erosion is just like soil erosion only, it erodes \

    away the boundaries of foreground object (Always try to keep foreground in white). \

    So what it does? The kernel slides through the image (as in 2D convolution). A pixel in the \

    original image (either 1 or 0) will be considered 1 only if all the pixels under the kernel is 1, \

    otherwise it is eroded (made to zero). \n \

    So what happends is that, all the pixels near boundary will be discarded depending upon the \

    size of kernel. So the thickness or size of the foreground object decreases or simply white region \

    decreases in the image. \n\

    It is useful for removing small white noises, detach two connected objects etc. \n \

    :orange[**Best practice :** convert to grayscale before apply erosion.]​")
                    kernel_size_ero = st.slider("Kernel size:", 3, 21, 3, 2, key=102)
                    nb_iter = st.slider('Iterations number:', 1, 7, 1, 1, key=201)

                    c1, c2 = st.columns(2)
                    apply_tab4a = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=8)
                    with c2:
                        submit_tab4a = st.form_submit_button(":green[Confirm]")

                if submit_tab4a:
                    st.session_state.erosion = apply_tab4a
                    st.session_state.erosion_kernel_size = kernel_size_ero
                    st.session_state.nb_iter_erosion = nb_iter
                    st.rerun()

            if "Dilation" in list_select:
                with st.form("tab_4b"):
                    st.markdown("πŸ’¬ :green[Dilation?]",
                                    help="The opposite of an erosion is a dilation. Just like an \

    erosion will eat away at the foreground pixels, a dilation will grow the foreground pixels. \

    Dilations increase the size of foreground objects and are especially useful for joining broken \

    parts of an image together. Dilations, just as an erosion, also utilize structuring elements \

    β€” a center pixel p of the structuring element is set to white if ANY pixel in the structuring \

    element is > 0. \n \

    :orange[**Best practice :** convert to grayscale before apply dilation.]​")
                    kernel_size_dil = st.slider("Kernel size:", 3, 21, 3, 2, key=103)
                    nb_iter = st.slider('Iterations number:', 1, 7, 1, 1, key=202)
                    kernel = np.ones((kernel_size_dil,kernel_size_dil),np.uint8)

                    c1, c2 = st.columns(2)
                    apply_tab4b = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=9)
                    with c2:
                        submit_tab4b = st.form_submit_button(":green[Confirm]")

                if submit_tab4b:
                    st.session_state.dilation = apply_tab4b
                    st.session_state.dilation_kernel_size = kernel_size_dil
                    st.session_state.nb_iter_dilation = nb_iter
                    st.rerun()

        with tab5: # Thresholding
            selection = st.segmented_control("Type:", ["Binarization", "Adaptative thresholding"])
            match selection:
                case "Binarization":
                    with st.form("tab5_a"):
                        st.markdown("πŸ’¬ :green[What is thresholding?]",
                                    help='''Thresholding is the binarization of an image. In general, we seek to

                                            convert a grayscale image to a binary image, where the pixels are either

                                            0 or 255.

                                            A simple thresholding example would be selecting a threshold value T,

                                            and then setting all pixel intensities less than T to 0, and all pixel

                                            values greater than T to 255. In this way, we are able to create a binary

                                            representation of the image.''')
                        st.markdown("*:orange[⚠ Image must be in gray scale]*")
                        cols_tab1 = st.columns([0.1, 0.9], gap="medium", vertical_alignment="center")
                        with cols_tab1[1]:
                            thresholding_type = cols_tab1[1].selectbox("Thresholding type:",
                                                                    list(dict_thresholding_type.keys()))
                            with cols_tab1[0].popover(":material/info:", help="Help on thresholding type",
                                                    use_container_width=False):
                                st.link_button("πŸ“š:blue[cf. OpenCV documentation :]",
                                            "https://docs.opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_transformations.html#threshold")

                        thresh = st.slider("Thresh :", 0, 255, 255, 1)
                        if thresholding_type in ["cv.THRESH_BINARY", "cv.THRESH_BINARY_INV"]:
                            value = st.slider("Value :", 0, 255, 255, 1)
                        else:
                            value = 255

                        cols_tab3 = st.columns(2, gap="medium", vertical_alignment="center")
                        otsu = cols_tab3[0].checkbox("Optimum Global Thresholding using Otsu’s Method?",
                                                    help='''Otsu’s method tries to find a threshold value

                                                        which minimizes the weighted within-class variance.

                                                        Since Variance is the spread of the distribution

                                                            about the mean. Thus, minimizing the within-class

                                                            variance will tend to make the classes compact.''')
                        cols_tab3[1].link_button("πŸ“š:blue[Documentation]",
                                                "https://theailearner.com/2019/07/19/optimum-global-thresholding-using-otsus-method/")

                        thresh_typ = dict_thresholding_type[thresholding_type]

                        c1, c2 = st.columns(2)
                        apply_tab5a = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=10)
                        with c2:
                            submit_tab5a = st.form_submit_button(":green[Confirm]")

                    if submit_tab5a:
                        if otsu:
                            thresh_typ = thresh_typ+cv2.THRESH_OTSU
                        st.session_state.binarization = apply_tab5a
                        st.session_state.bin_thresh = thresh
                        st.session_state.bin_value = value
                        st.session_state.bin_thresholding_type = thresholding_type
                        st.session_state.bin_otsu = otsu
                        st.session_state.thresh_typ = thresh_typ
                        st.rerun()

                case "Adaptative thresholding":
                    with st.form("tab5_b"):
                        st.markdown("πŸ’¬ :green[What is adaptative thresholding?]",
                                            help='''This is a usefull technique when dealing with images having non-uniform illumination.

                                            In this, the threshold value is calculated separately for each pixel using

                                            some statistics obtained from its neighborhood. This way we will get different thresholds

                                            for different image regions and thus tackles the problem of varying illumination.''')
                        st.markdown("*:orange[⚠ Image must be in gray scale]*")
                        thresholding_type = st.selectbox("Thresholding type:",
                                                        list(dict_thresholding_type.keys())[:2])
                        max_value = st.slider("Max value :", 0, 255, 255, 1,
                                              help="""This is the value assigned to the pixels after thresholding.

                                                This depends on the thresholding type. If the type is cv2.THRESH_BINARY,

                                                all the pixels greater than the threshold are assigned this maxValue.""")
                        adaptative_method = st.selectbox("Adaptative method:",
                                                         list(dict_adaptative_method.keys()),
                                                         help="""This tells us how the threshold is calculated from the pixel neighborhood.

                This currently supports two methods:

                - cv2.ADAPTIVE_THRESH_MEAN_C: In this, the threshold value is the mean of the neighborhood area.\n

                - cv2.ADAPTIVE_THRESH_GAUSSIAN_C: In this, the threshold value is the weighted sum of the

                neighborhood area. This uses Gaussian weights computed using getGaussiankernel() method.""")
                        block_size = st.slider("Block size:", 3, 21, 3, 2,
                                               help='''**πŸ” What is blockSize?**\n

                In adaptive thresholding, the threshold for each pixel is determined based on a local neighborhood around it.

                The blockSize parameter specifies the size of this neighborhood.

                Specifically, it defines the dimensions of the square region (of size blockSize Γ— blockSize) centered on the pixel being processed.

                The threshold is then calculated based on the pixel values within this region.​\n

                **βœ… Acceptable Values for blockSize**\n

                Must be an odd integer greater than 1: This ensures that the neighborhood has a central pixel.​

                Common choices: 3, 5, 7, 9, 11, 13, 15, etc.​

                Even numbers are invalid: Using an even blockSize (e.g., 2, 4, 6) would result in an error because

                there would be no central pixel in the neighborhood.​\n

                **🎯 Impact of blockSize on Thresholding**\n

                Smaller blockSize (e.g., 3 or 5):​\n

                - Captures fine details and small variations in illumination.​

                - May be more sensitive to noise.​\n

                Larger blockSize (e.g., 15 or 21):​\n

                - Provides smoother thresholding, reducing the effect of noise.​

                - Might overlook small features or details.



                Choosing the appropriate blockSize depends on the specific characteristics of your image and the details you wish to preserve or suppress.''')
                        const = st.slider("C:", -10, 20, 0, 1,
                                          help='''The parameter C serves as a constant subtracted from the computed mean or weighted mean of the

                                                    neighborhood pixels. This subtraction fine-tunes the thresholding process, allowing for better control

                                                    over the binarization outcome.

                **🎯 Typical Values for C**

                The optimal value for C varies depending on the image's characteristics, such as lighting conditions and noise levels. Commonly used values include:​

                - 2 to 10: These values are often effective for standard images with moderate lighting variations.​

                - Higher values (e.g., 15 or 20): Useful for images with significant noise or when a more aggressive thresholding is needed.​

                - Negative values: Occasionally used to make the thresholding more lenient, capturing lighter details that might otherwise be missed.​



                It's advisable to experiment with different C values to determine the most suitable one for your specific application. ''')

                        c1, c2 = st.columns(2)
                        apply_tab5b = c1.toggle("Apply", help="Click here to indicate whether the operation should be carried out or not, then validate with Confirm.", key=11)
                        with c2:
                            submit_tab5b = st.form_submit_button(":green[Confirm]")

                    if submit_tab5b:
                        st.session_state.adaptative_thresh = apply_tab5b
                        st.session_state.at_max_value = max_value
                        st.session_state.at_adaptative_method = adaptative_method
                        st.session_state.at_thresholding_type = thresholding_type
                        st.session_state.at_block_size = block_size
                        st.session_state.at_const = const
                        st.rerun()

    col1_a, col1_b = col1.columns(2)
    if col1_a.button("πŸ“ƒ :blue[List of operations]"):
        col1_a.write(list_op)

    if col1_b.button("Prepare download"):
        if len(img_wrk.shape) == 2:
            pil_img = Image.fromarray(img_wrk).convert("L")
        else:
            img_rgb = cv2.cvtColor(img_wrk, cv2.COLOR_BGR2RGB)
            pil_img = Image.fromarray(img_rgb)
        img_bytes = io.BytesIO()
        pil_img.save(img_bytes, format='PNG')
        img_bytes.seek(0)
        col1_b.download_button(
            label="Download processed image",
            data=img_bytes,
            file_name="processed_image.png",
            on_click="ignore",
            icon=":material/download:",
            mime="image/png"
        )

    with col2.expander(":blue[Quick overview of OCR recognition (with PPOCR)]", expanded=True):
        with st.form("form1"):
            key_ppocr_lang = st.selectbox("Choose language: :", dict_lang_ppocr.keys(), 20)
            res_cnt = st.empty()
            submit_detect = st.form_submit_button("Launch overview")

        ##----------- Process OCR --------------------------------------------------------------
        if submit_detect:
            with res_cnt, st.spinner("PPOCR initialization ..."):
                ocr = PaddleOCR(lang=dict_lang_ppocr[key_ppocr_lang]) #, show_log=False)
            with res_cnt, st.spinner("OCR process ..."):
                result = ocr.ocr(img_wrk)
            # draw result
            result = result[0]
            if len(img_wrk.shape) == 3:
                image = img_wrk.copy()
            else:
                image = cv2.cvtColor(img_wrk, cv2.COLOR_GRAY2RGB)
            boxes = [line[0] for line in result]

            txts = [line[1][0] for line in result]
            scores = [line[1][1] for line in result]
            im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/french.ttf')
            im_show = Image.fromarray(im_show)
            res_cnt.image(im_show, use_container_width=True)