Spaces:
Sleeping
Sleeping
import gradio as gr | |
import datetime | |
import Implementation as imp | |
import time | |
import os | |
# ========== Fonctions Backend ========== | |
def detect_hate_speech(video_path, mode): | |
if mode == "Low ๐ฑ": | |
Co2_release = "low" | |
elif mode == "Medium โจ๏ธ": | |
Co2_release = "medium" | |
else: | |
Co2_release = "high" | |
hate_speech_time, C02_emissions = imp.detectHateSpeechSmartFilter(video_path, Co2_release) | |
return hate_speech_time, C02_emissions | |
def detect_hate_speech_audio(audio_path, mode): | |
if mode == "Low ๐ฑ": | |
Co2_release = "low" | |
elif mode == "Medium โจ๏ธ": | |
Co2_release = "medium" | |
else: | |
Co2_release = "high" | |
hate_speech_time, C02_emissions = imp.Detect_hate_speech_emo_hate_bert(audio_path, Co2_release) | |
return hate_speech_time, C02_emissions | |
def convertir_timestamp_en_secondes(timestamp): | |
h, m, s = map(int, timestamp.split(":")) | |
return h * 3600 + m * 60 + s | |
def analyser_media(fichier, mode, is_audio=False): | |
if not fichier: | |
return "<p style='color:red;'>โ No files uploaded. Please add video or audio.</p>", "" | |
if is_audio: | |
timestamps, carbone = detect_hate_speech_audio(fichier, mode) | |
else: | |
timestamps, carbone = detect_hate_speech(fichier, mode) | |
liens = "<div style='line-height: 2; font-size: 16px;'>" | |
total_seconds = 0 | |
for idx, (start_time, end_time) in enumerate(timestamps, 1): | |
secondes = convertir_timestamp_en_secondes(start_time) | |
liens += f'<button style="margin:5px; padding:8px 12px; border:none; border-radius:8px; background:#2d2d2d; color:white; cursor:pointer;" onclick="var player=document.getElementById(\'video-player\').querySelector(\'video, audio\'); if(player){{player.currentTime={secondes}; player.play();}}">๐ Segment {idx} : {start_time} โ {end_time}</button><br>' | |
duree_segment = convertir_timestamp_en_secondes(end_time) - secondes | |
total_seconds += duree_segment | |
liens += "</div>" | |
nb_segments = len(timestamps) | |
duree_totale = str(datetime.timedelta(seconds=total_seconds)) | |
resume = f"<div style='margin-top:20px; font-size:18px;'>๐งฎ <b>Segments detected</b>: {nb_segments}<br>โณ <b>Total Hate Speech Duration</b>: {duree_totale} <br>โป๏ธ <b>Carbon Footprint</b>: {carbone}</div>" | |
return liens, resume | |
def afficher_pipeline(show): | |
return gr.update(visible=show) | |
def show_loader(): | |
return gr.update(visible=True), "", "" | |
def analyser_avec_loading(video, mode): | |
liens, resume = analyser_media(video, mode, is_audio=False) | |
return gr.update(visible=False), liens, resume | |
def analyser_audio_avec_loading(audio, mode): | |
liens, resume = analyser_media(audio, mode, is_audio=True) | |
return gr.update(visible=False), liens, resume | |
# ========== Interface Gradio ========== | |
with gr.Blocks(theme=gr.themes.Monochrome(), css="body {background-color: #121212; color: white;}") as demo: | |
# En-tรชte | |
gr.HTML(""" | |
<div style='text-align: center; margin-bottom: 20px;'> | |
<h1 style='color: #00BFFF;'>๐ EPFL Project โ Emotion-Aware and Eco-Conscious Hate Speech Detection in Video and Audio</h1> | |
<h3 style="color: white;"> This project provides an intelligent and environmentally conscious platform for detecting hate speech in videos and audio. It combines the latest tools in NLP, emotion analysis and computer vision, with COโ tracking, to offer both performance and eco-responsibility.</h3> | |
<h3 style='color: #AAAAAA;'>Participants: Loris Alan Fabbro, Mohammed Al-Hussini, Loic Misenta</h3> | |
<a href='https://github.com/loris-fab/Deep_learning/blob/main/README.md' | |
target='_blank' style='color: orange; font-weight:bold;'>๐ GitHub</a> | |
</div> | |
""") | |
gr.Image("logo.png", width=150, show_label=False, show_download_button=False) | |
# Affichage du pipeline | |
with gr.Row(): | |
show_pipeline = gr.Checkbox(label="๐ Show Pipeline Overview", value=False) | |
pipeline_image = gr.Image( | |
value="pipeline.png", | |
label="Pipeline Overview", | |
show_label=True, | |
visible=False | |
) | |
show_pipeline.change( | |
afficher_pipeline, | |
inputs=[show_pipeline], | |
outputs=[pipeline_image] | |
) | |
gr.Markdown("# ๐ฅ Hate Speech Detector in Your Videos or Audio", elem_id="titre") | |
with gr.Row(): | |
video_input = gr.Video(label="Upload your video", elem_id="video-player") | |
with gr.Row(): | |
audio_input = gr.Audio(label="Upload your audio", type="filepath") | |
with gr.Row(): | |
mode_selection = gr.Radio(["Low ๐ฑ", "Medium โจ๏ธ", "High Consumption โ ๏ธ"], label="Carbon Footprint Mode") | |
bouton_analyse_video = gr.Button("Detect Hate Speech in Video ๐ฅ") | |
bouton_analyse_audio = gr.Button("Detect Hate Speech in Audio ๐ง") | |
with gr.Column() as resultats: | |
loading_gif = gr.Image( | |
value="loading.gif", | |
visible=False, | |
show_label=False | |
) | |
liens_resultats = gr.HTML() | |
resume_resultats = gr.HTML() | |
bouton_analyse_video.click( | |
fn=show_loader, | |
inputs=[], | |
outputs=[loading_gif, liens_resultats, resume_resultats], | |
show_progress=False | |
) | |
bouton_analyse_video.click( | |
fn=analyser_avec_loading, | |
inputs=[video_input, mode_selection], | |
outputs=[loading_gif, liens_resultats, resume_resultats], | |
show_progress=True | |
) | |
bouton_analyse_audio.click( | |
fn=show_loader, | |
inputs=[], | |
outputs=[loading_gif, liens_resultats, resume_resultats], | |
show_progress=False | |
) | |
bouton_analyse_audio.click( | |
fn=analyser_audio_avec_loading, | |
inputs=[audio_input, mode_selection], | |
outputs=[loading_gif, liens_resultats, resume_resultats], | |
show_progress=True | |
) | |
demo.launch(share=True) | |