Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,025 Bytes
6fce8cc 6678b47 11c0865 6678b47 6fce8cc 6678b47 11c0865 6678b47 722e880 6678b47 722e880 6678b47 722e880 6678b47 11c0865 6678b47 11c0865 6678b47 11c0865 6678b47 11c0865 6678b47 11c0865 6678b47 11c0865 6678b47 11c0865 6678b47 722e880 6678b47 722e880 6678b47 722e880 6678b47 722e880 6678b47 722e880 6678b47 11c0865 6678b47 11c0865 6678b47 722e880 6678b47 11c0865 6678b47 722e880 6678b47 4b2ec41 6678b47 11c0865 6678b47 11c0865 6678b47 11c0865 6678b47 4b2ec41 6678b47 11c0865 6678b47 11c0865 6678b47 11c0865 6678b47 11c0865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import spaces
import os
import pickle
from time import perf_counter
import tempfile
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import AutoPipelineForInpainting, AutoencoderTiny, LCMScheduler
from utils.drag import bi_warp
__all__ = [
'clear_all', 'resize',
'visualize_user_drag', 'preview_out_image', 'inpaint',
'add_point', 'undo_point', 'clear_point',
]
# Global variables for lazy loading
pipe = None
# UI functions
def clear_all(length):
"""Reset UI by clearing all input images and parameters."""
return (gr.Image(value=None, height=length, width=length),) * 3 + ([], 5, None)
def resize(canvas, gen_length, canvas_length):
"""Resize canvas while maintaining aspect ratio."""
if not canvas:
return (gr.Image(value=None, width=canvas_length, height=canvas_length),) * 3
result = process_canvas(canvas)
if result[0] is None: # Check if image is None
return (gr.Image(value=None, width=canvas_length, height=canvas_length),) * 3
image = result[0]
aspect_ratio = image.shape[1] / image.shape[0]
is_landscape = aspect_ratio >= 1
new_dims = (
(gen_length, round(gen_length / aspect_ratio / 8) * 8) if is_landscape
else (round(gen_length * aspect_ratio / 8) * 8, gen_length)
)
canvas_dims = (
(canvas_length, round(canvas_length / aspect_ratio)) if is_landscape
else (round(canvas_length * aspect_ratio), canvas_length)
)
return (gr.Image(value=cv2.resize(image, new_dims), width=canvas_dims[0], height=canvas_dims[1]),) * 3
def process_canvas(canvas):
"""Extracts the image (H, W, 3) and the mask (H, W) from a Gradio canvas object."""
# Handle None canvas
if canvas is None:
return None, None
# Handle new ImageEditor format
if isinstance(canvas, dict):
if 'background' in canvas and 'layers' in canvas:
# New ImageEditor format
if canvas["background"] is None:
return None, None
image = canvas["background"].copy()
# Ensure image is 3-channel RGB
if len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3] # Remove alpha channel
elif len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
# Try to extract mask from layers
mask = np.zeros(image.shape[:2], dtype=np.uint8)
if canvas["layers"]:
for layer in canvas["layers"]:
if isinstance(layer, np.ndarray) and len(layer.shape) >= 2:
layer_mask = np.uint8(layer[:, :, 0] > 0) if len(layer.shape) == 3 else np.uint8(layer > 0)
mask = np.logical_or(mask, layer_mask).astype(np.uint8)
elif 'image' in canvas and 'mask' in canvas:
# Old format
if canvas["image"] is None:
return None, None
image = canvas["image"].copy()
# Ensure image is 3-channel RGB
if len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3] # Remove alpha channel
elif len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
mask = np.uint8(canvas["mask"][:, :, 0] > 0).copy() if canvas["mask"] is not None else np.zeros(image.shape[:2], dtype=np.uint8)
else:
# Fallback
return None, None
else:
# Direct numpy array
if canvas is None:
return None, None
image = canvas.copy() if isinstance(canvas, np.ndarray) else np.array(canvas)
# Ensure image is 3-channel RGB
if len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3] # Remove alpha channel
elif len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
mask = np.zeros(image.shape[:2], dtype=np.uint8)
return image, mask
# Point manipulation functions
def add_point(canvas, points, inpaint_ks, evt: gr.SelectData):
"""Add selected point to points list and update image."""
if canvas is None:
return None
points.append(evt.index)
return visualize_user_drag(canvas, points)
def undo_point(canvas, points, inpaint_ks):
"""Remove last point and update image."""
if canvas is None:
return None
if len(points) > 0:
points.pop()
return visualize_user_drag(canvas, points)
def clear_point(canvas, points, inpaint_ks):
"""Clear all points and update image."""
if canvas is None:
return None
points.clear()
return visualize_user_drag(canvas, points)
# Visualization tools
def visualize_user_drag(canvas, points):
"""Visualize control points and motion vectors on the input image."""
if canvas is None:
return None
result = process_canvas(canvas)
if result[0] is None: # Check if image is None
return None
image, mask = result
# Ensure image is uint8 and 3-channel
if image.dtype != np.uint8:
image = (image * 255).astype(np.uint8) if image.max() <= 1.0 else image.astype(np.uint8)
if len(image.shape) != 3 or image.shape[2] != 3:
return None
# Apply colored mask overlay
result_img = image.copy()
if np.any(mask == 1):
result_img[mask == 1] = [255, 0, 0] # Red color
image = cv2.addWeighted(result_img, 0.3, image, 0.7, 0)
# Draw mask outline
if np.any(mask > 0):
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(image, contours, -1, (255, 255, 255), 2)
# Draw control points and motion vectors
prev_point = None
for idx, point in enumerate(points, 1):
if idx % 2 == 0:
cv2.circle(image, tuple(point), 10, (0, 0, 255), -1) # End point
if prev_point is not None:
cv2.arrowedLine(image, prev_point, point, (255, 255, 255), 4, tipLength=0.5)
else:
cv2.circle(image, tuple(point), 10, (255, 0, 0), -1) # Start point
prev_point = point
return image
def preview_out_image(canvas, points, inpaint_ks):
"""Preview warped image result and generate inpainting mask."""
if canvas is None:
return None, None
result = process_canvas(canvas)
if result[0] is None: # Check if image is None
return None, None
image, mask = result
# Ensure image is uint8 and 3-channel
if image.dtype != np.uint8:
image = (image * 255).astype(np.uint8) if image.max() <= 1.0 else image.astype(np.uint8)
if len(image.shape) != 3 or image.shape[2] != 3:
return image, None
if len(points) < 2:
return image, None
# ensure H, W divisible by 8 and longer edge 512
shapes_valid = all(s % 8 == 0 for s in mask.shape + image.shape[:2])
size_valid = all(max(x.shape[:2] if len(x.shape) > 2 else x.shape) == 512 for x in (image, mask))
if not (shapes_valid and size_valid):
gr.Warning('Click Resize Image Button first.')
return image, None
try:
handle_pts, target_pts, inpaint_mask = bi_warp(mask, points, inpaint_ks)
image[target_pts[:, 1], target_pts[:, 0]] = image[handle_pts[:, 1], handle_pts[:, 0]]
# Add grid pattern to highlight inpainting regions
background = np.ones_like(mask) * 255
background[::10] = background[:, ::10] = 0
image = np.where(inpaint_mask[..., np.newaxis]==1, background[..., np.newaxis], image)
return image, (inpaint_mask * 255).astype(np.uint8)
except Exception as e:
gr.Warning(f"Preview failed: {str(e)}")
return image, None
# Inpaint tools
@spaces.GPU
def setup_pipeline(device='cuda', model_version='v1-5'):
"""Initialize optimized inpainting pipeline with specified model configuration."""
MODEL_CONFIGS = {
'v1-5': ('runwayml/stable-diffusion-inpainting', 'latent-consistency/lcm-lora-sdv1-5', 'madebyollin/taesd'),
'xl': ('diffusers/stable-diffusion-xl-1.0-inpainting-0.1', 'latent-consistency/lcm-lora-sdxl', 'madebyollin/taesdxl')
}
model_id, lora_id, vae_id = MODEL_CONFIGS[model_version]
# Check if CUDA is available, fallback to CPU
if not torch.cuda.is_available():
device = 'cpu'
torch_dtype = torch.float32
variant = None
else:
torch_dtype = torch.float16
variant = "fp16"
gr.Info('Loading inpainting pipeline...')
pipe = AutoPipelineForInpainting.from_pretrained(
model_id,
torch_dtype=torch_dtype,
variant=variant,
safety_checker=None
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(lora_id)
pipe.fuse_lora()
pipe.vae = AutoencoderTiny.from_pretrained(vae_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
# Pre-compute prompt embeddings during setup
if model_version == 'v1-5':
pipe.cached_prompt_embeds = pipe.encode_prompt(
'', device=device, num_images_per_prompt=1,
do_classifier_free_guidance=False)[0]
else:
pipe.cached_prompt_embeds, pipe.cached_pooled_prompt_embeds = pipe.encode_prompt(
'', device=device, num_images_per_prompt=1,
do_classifier_free_guidance=False)[0::2]
return pipe
def get_pipeline():
"""Lazy load pipeline only when needed."""
global pipe
if pipe is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
pipe = setup_pipeline(device=device, model_version='v1-5')
if device == 'cuda':
pipe.cached_prompt_embeds = pipe.encode_prompt('', 'cuda', 1, False)[0]
else:
pipe.cached_prompt_embeds = pipe.encode_prompt('', 'cpu', 1, False)[0]
return pipe
@spaces.GPU
def inpaint(image, inpaint_mask):
"""Perform efficient inpainting on masked regions using Stable Diffusion."""
if image is None:
return None
if inpaint_mask is None:
return image
start = perf_counter()
# Get pipeline (lazy loading)
pipe = get_pipeline()
pipe_id = 'xl' if 'xl' in pipe.config._name_or_path else 'v1-5'
inpaint_strength = 0.99 if pipe_id == 'xl' else 1.0
# Convert inputs to PIL
image_pil = Image.fromarray(image)
inpaint_mask_pil = Image.fromarray(inpaint_mask)
width, height = inpaint_mask_pil.size
if width % 8 != 0 or height % 8 != 0:
width, height = round(width / 8) * 8, round(height / 8) * 8
image_pil = image_pil.resize((width, height))
image = np.array(image_pil)
inpaint_mask_pil = inpaint_mask_pil.resize((width, height), Image.NEAREST)
inpaint_mask = np.array(inpaint_mask_pil)
# Common pipeline parameters
common_params = {
'image': image_pil,
'mask_image': inpaint_mask_pil,
'height': height,
'width': width,
'guidance_scale': 1.0,
'num_inference_steps': 8,
'strength': inpaint_strength,
'output_type': 'np'
}
# Run pipeline
try:
if pipe_id == 'v1-5':
inpainted = pipe(
prompt_embeds=pipe.cached_prompt_embeds,
**common_params
).images[0]
else:
inpainted = pipe(
prompt_embeds=pipe.cached_prompt_embeds,
pooled_prompt_embeds=pipe.cached_pooled_prompt_embeds,
**common_params
).images[0]
except Exception as e:
gr.Warning(f"Inpainting failed: {str(e)}")
return image
# Post-process results
inpaint_mask = (inpaint_mask[..., np.newaxis] / 255).astype(np.uint8)
return (inpainted * 255).astype(np.uint8) * inpaint_mask + image * (1 - inpaint_mask) |