--- title: Streaming Zipformer emoji: πŸ‘€ colorFrom: blue colorTo: purple sdk: docker pinned: false license: mit short_description: Streaming zipformer --- # πŸŽ™οΈ Real-Time Streaming ASR Demo (FastAPI + Sherpa-ONNX) This project demonstrates a real-time speech-to-text (ASR) web application with: * 🧠 [Sherpa-ONNX](https://github.com/k2-fsa/sherpa-onnx) streaming Zipformer model * πŸš€ FastAPI backend with WebSocket support * πŸŽ›οΈ Configurable browser-based UI using vanilla HTML/JS * ☁️ Docker-compatible deployment (CPU-only) on Hugging Face Spaces ## πŸ“¦ Model The app uses the bilingual (Chinese-English) streaming Zipformer model: πŸ”— **Model Source:** [Zipformer Small Bilingual zh-en (2023-02-16)](https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/zipformer-transducer-models.html#sherpa-onnx-streaming-zipformer-small-bilingual-zh-en-2023-02-16-bilingual-chinese-english) Model files (ONNX) are located under: ``` models/zipformer_bilingual/ ``` ## πŸš€ Features * 🎀 **Real-Time Microphone Input:** capture audio directly in the browser. * πŸŽ›οΈ **Recognition Settings:** select ASR model and precision; view supported languages and model size. * πŸ”‘ **Hotword Biasing:** input custom hotwords (one per line) and adjust boost score. See [Sherpa-ONNX Hotwords Guide](https://k2-fsa.github.io/sherpa/onnx/hotwords/index.html). * ⏱️ **Endpoint Detection:** configure silence-based rules (RuleΒ 1 threshold, RuleΒ 2 threshold, minimum utterance length) to control segmentation. See [Sherpa-NCNN Endpoint Detection](https://k2-fsa.github.io/sherpa/ncnn/endpoint.html). * πŸ“Š **Volume Meter:** real-time volume indicator based on RMS. * πŸ’¬ **Streaming Transcription:** display partial (in red) and final (in green) results with automatic scrolling. * πŸ› οΈ **Debug Logging:** backend logs configuration steps and endpoint detection events. * 🐳 **Deployment:** Dockerfile provided for CPU-only deployment on Hugging Face Spaces. ## πŸ› οΈ Configuration Guide ### πŸ”‘ Hotword Biasing Configuration * **Hotwords List** (`hotwordsList`): Enter one hotword or phrase per line. These are words/phrases the ASR will preferentially recognize. For multilingual models, you can mix scripts according to your model’s `modeling-unit` (e.g., `cjkchar+bpe`). * **Boost Score** (`boostScore`): A global score applied at the token level for each matched hotword (range: `0.0`–`10.0`). You may also specify per-hotword scores inline in the list using `:`, for example: ``` θ―­ιŸ³θ―†εˆ« :3.5 ζ·±εΊ¦ε­¦δΉ  :2.0 SPEECH RECOGNITION :1.5 ``` * **Decoding Method**: Ensure your model uses `modified_beam_search` (not the default `greedy_search`) to enable hotword biasing. * **Applying**: Click **Apply Hotwords** in the UI to send the following JSON payload to the backend: ```json { "type": "config", "hotwords": ["..."], "hotwordsScore": 2.0 } ``` (For full details, see the [Sherpa-ONNX Hotwords Guide](https://k2-fsa.github.io/sherpa/onnx/hotwords/index.html) ([k2-fsa.github.io](https://k2-fsa.github.io/sherpa/onnx/hotwords/index.html)).) ### ⏱️ Endpoint Detection Configuration The system supports three endpointing rules borrowed from Kaldi: * **RuleΒ 1** (`epRule1`): Minimum duration of trailing silence to trigger an endpoint, in **seconds** (default: `2.4`). Fires whether or not any token has been decoded. * **RuleΒ 2** (`epRule2`): Minimum duration of trailing silence to trigger an endpoint *only after* at least one token is decoded, in **seconds** (default: `1.2`). * **RuleΒ 3** (`epRule3`): Maximum utterance length before forcing an endpoint, in **milliseconds** (default: `300`). Disable by setting a very large value. * **Applying**: Click **Apply Endpoint Config** in the UI to send the following JSON payload to the backend: ```json { "type": "config", "epRule1": 2.4, "epRule2": 1.2, "epRule3": 300 } ``` (See the [Sherpa-NCNN Endpointing documentation](https://k2-fsa.github.io/sherpa/ncnn/endpoint.html) ([k2-fsa.github.io](https://k2-fsa.github.io/sherpa/ncnn/endpoint.html)).) ## πŸ§ͺ Local Development 1. **Install dependencies** ```bash pip install -r requirements.txt ``` 2. **Run the app locally** ```bash uvicorn app.main:app --reload --host 0.0.0.0 --port 8501 ``` Open [http://localhost:8501](http://localhost:8501) in your browser. [https://k2-fsa.github.io/sherpa/ncnn/endpoint.html](https://k2-fsa.github.io/sherpa/ncnn/endpoint.html) ## πŸ“ Project Structure ``` . β”œβ”€β”€ app β”‚ β”œβ”€β”€ main.py # FastAPI + WebSocket endpoint, config parsing, debug logging β”‚ β”œβ”€β”€ asr_worker.py # Audio resampling, inference, endpoint detection, OpenCC conversion β”‚ └── static/index.html # Client-side UI: recognition, hotword, endpoint, mic, transcript β”œβ”€β”€ models/zipformer_bilingual/ β”‚ └── ... (onnx, tokens.txt) β”œβ”€β”€ requirements.txt β”œβ”€β”€ Dockerfile └── README.md ``` ## πŸ”§ Credits * [Sherpa-ONNX](https://github.com/k2-fsa/sherpa-onnx) * [OpenCC](https://github.com/BYVoid/OpenCC) * [FastAPI](https://fastapi.tiangolo.com/) * [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces)