File size: 27,789 Bytes
766564c 913c94a 766564c 913c94a 766564c ba4a241 913c94a 7c59b7a 913c94a 766564c 9453a6f 766564c 9453a6f 766564c 9453a6f 766564c fa3fe1c 766564c fa3fe1c 7c59b7a ba4a241 766564c 7c59b7a 766564c ba4a241 7c59b7a ba4a241 766564c ba4a241 766564c ba4a241 766564c e441a1a 766564c ba4a241 766564c ba4a241 766564c ba4a241 766564c ba4a241 766564c ba4a241 766564c 913c94a 766564c ba4a241 766564c ba4a241 766564c ba4a241 766564c e441a1a 766564c 030e33b 766564c e441a1a 766564c e441a1a 766564c 913c94a 766564c 913c94a 766564c e441a1a 766564c e441a1a 766564c ba4a241 766564c ba4a241 766564c 913c94a 766564c 913c94a 766564c ba4a241 766564c 030e33b 766564c ba4a241 766564c ba4a241 766564c ba4a241 766564c ba4a241 766564c 913c94a 766564c 030e33b 913c94a 766564c ba4a241 913c94a 766564c ba4a241 766564c ba4a241 766564c 6bf9bbb 913c94a 030e33b 913c94a 766564c 6bf9bbb 030e33b 6bf9bbb 030e33b 6bf9bbb 913c94a 6bf9bbb 913c94a 6bf9bbb 913c94a 6bf9bbb 030e33b 6bf9bbb 913c94a 6bf9bbb ba4a241 6bf9bbb 913c94a 6bf9bbb 030e33b 6bf9bbb 030e33b 6bf9bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
#!/usr/bin/env python3
"""
Speaker Diarization module using Sherpa-ONNX
Integrates seamlessly with VoxSum ASR pipeline
Enhanced with adaptive clustering and quality validation
OPTIMIZED MODEL: 3dspeaker_campplus_zh_en_advanced
- Performance: F1=0.500, Accuracy=0.500
- Speed: 60.5ms average (2x faster than baseline)
- Size: 27MB (compact for production)
- Languages: Chinese/Taiwanese + English support
- Architecture: CAM++ multilingual advanced
"""
import os
import numpy as np
try:
import sherpa_onnx # type: ignore
except Exception: # pragma: no cover
class _SherpaStub: # minimal stub to allow tests without the dependency
class SpeakerEmbeddingExtractorConfig: # noqa: D401
def __init__(self, *args, **kwargs):
pass
class SpeakerEmbeddingExtractor:
def __init__(self, *args, **kwargs):
raise RuntimeError("sherpa_onnx not installed; real embedding extraction unavailable")
sherpa_onnx = _SherpaStub() # type: ignore
from pathlib import Path
from typing import List, Tuple, Optional, Callable, Dict, Any, Generator
import logging
from .utils import get_writable_model_dir, num_vcpus
try: # Optional dependency
from huggingface_hub import hf_hub_download # type: ignore
except Exception: # pragma: no cover
def hf_hub_download(*args, **kwargs): # minimal stub
raise RuntimeError("huggingface_hub not installed; model download unavailable")
import shutil
try: # Optional dependency
from sklearn.metrics import silhouette_score # type: ignore
except Exception: # pragma: no cover
def silhouette_score(*args, **kwargs):
return -1.0
# Import the improved diarization pipeline (robust: search repo tree)
try:
from importlib import import_module
# Try direct import first (works when repo root is in PYTHONPATH)
try:
mod = import_module('improved_diarization')
except Exception:
# Search up to 6 parent directories for improved_diarization.py
repo_root = None
current = Path(__file__).resolve()
for parent in list(current.parents)[:6]:
candidate = parent / 'improved_diarization.py'
if candidate.exists():
repo_root = parent
break
if repo_root is None:
# Fallback to CWD
cwd_candidate = Path.cwd() / 'improved_diarization.py'
if cwd_candidate.exists():
repo_root = Path.cwd()
if repo_root is not None:
import sys
sys.path.insert(0, str(repo_root))
mod = import_module('improved_diarization')
else:
raise ImportError('improved_diarization module not found in repository tree')
enhance_diarization_pipeline = getattr(mod, 'enhance_diarization_pipeline')
ENHANCED_DIARIZATION_AVAILABLE = True
print("✅ Enhanced diarization pipeline loaded successfully")
except Exception as e:
ENHANCED_DIARIZATION_AVAILABLE = False
logging.warning(f"Enhanced diarization not available - using fallback: {e}")
logger = logging.getLogger(__name__)
# Speaker colors for UI visualization
SPEAKER_COLORS = [
"#FF6B6B", # Red
"#4ECDC4", # Teal
"#45B7D1", # Blue
"#96CEB4", # Green
"#FFEAA7", # Yellow
"#DDA0DD", # Plum
"#FFB347", # Orange
"#87CEEB", # Sky Blue
"#F0E68C", # Khaki
"#FF69B4", # Hot Pink
]
def get_speaker_color(speaker_id: int) -> str:
"""Get consistent color for speaker ID"""
return SPEAKER_COLORS[speaker_id % len(SPEAKER_COLORS)]
def download_diarization_models():
"""
Download required models for speaker diarization if not present
Only downloads embedding model - we'll use Silero VAD for segmentation
Returns tuple (embedding_model_path, success)
"""
# Use a writable cache directory (works on HF Spaces and local)
cache_dir = get_writable_model_dir()
models_dir = cache_dir / "diarization"
models_dir.mkdir(parents=True, exist_ok=True)
# Model info
repo_id = "csukuangfj/speaker-embedding-models"
filename = "3dspeaker_speech_campplus_sv_zh_en_16k-common_advanced.onnx"
embedding_model = models_dir / filename
logger.info(f"Model cache directory: {models_dir}")
try:
# Download using huggingface_hub if not present
if not embedding_model.exists():
logger.info("📥 Downloading eres2netv2 Chinese speaker model from HuggingFace (29MB)...")
downloaded_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=models_dir,
local_dir=models_dir,
local_dir_use_symlinks=False,
resume_download=True
)
# Move/copy to expected location if needed
if Path(downloaded_path) != embedding_model:
shutil.copy(downloaded_path, embedding_model)
logger.info("✅ eres2netv2 Chinese embedding model downloaded!")
return str(embedding_model), True
except Exception as e:
logger.error(f"❌ Failed to download diarization models: {e}")
return None, False
def init_speaker_embedding_extractor(
cluster_threshold: float = 0.5,
num_speakers: int = -1
) -> Optional[Tuple[object, dict]]:
"""
Initialize speaker embedding extractor (without segmentation)
We use Silero VAD segments from ASR pipeline instead of PyAnnote
Args:
cluster_threshold: Clustering threshold (lower = more speakers)
num_speakers: Number of speakers (-1 for auto-detection)
Returns:
Tuple of (embedding_extractor, config_dict) or None
"""
try:
# Download models if needed (only embedding model now)
embedding_model, success = download_diarization_models()
if not success:
return None
# Create embedding extractor config
embedding_config = sherpa_onnx.SpeakerEmbeddingExtractorConfig(
model=embedding_model,
num_threads=num_vcpus
)
# Initialize embedding extractor
embedding_extractor = sherpa_onnx.SpeakerEmbeddingExtractor(embedding_config)
# Store clustering parameters separately
config_dict = {
'cluster_threshold': cluster_threshold,
'num_speakers': num_speakers
}
return embedding_extractor, config_dict
except Exception as e:
logger.error(f"❌ Failed to initialize speaker embedding extractor: {e}")
return None
def perform_speaker_diarization_on_utterances(
audio: np.ndarray,
sample_rate: int,
utterances: List[Tuple[float, float, str]],
embedding_extractor: object,
config_dict: dict,
progress_callback: Optional[Callable] = None
) -> Generator[float | List[Tuple[float, float, int]], None, List[Tuple[float, float, int]]]:
"""
Perform speaker diarization using existing ASR utterance segments
This avoids double segmentation by reusing Silero VAD results
Args:
audio: Audio samples (float32, mono)
sample_rate: Sample rate (should be 16kHz for optimal results)
utterances: ASR utterances from Silero VAD segmentation
embedding_extractor: Initialized embedding extractor
config_dict: Configuration dictionary with clustering parameters
progress_callback: Optional progress callback function
Returns:
List of (start_time, end_time, speaker_id) tuples
"""
print(f"🔍 DEBUG: perform_speaker_diarization_on_utterances called with {len(utterances)} utterances")
try:
# Ensure audio is float32 and mono
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
if len(audio.shape) > 1:
audio = audio.mean(axis=1) # Convert to mono
# Check sample rate
if sample_rate != 16000:
warning_msg = f"⚠️ Audio sample rate is {sample_rate}Hz, but 16kHz is optimal for diarization"
logger.warning(warning_msg)
if not utterances:
logger.warning("⚠️ No utterances provided for diarization")
return []
logger.info(f"🎭 Extracting embeddings from {len(utterances)} utterance segments...")
# Extract embeddings for each utterance segment
embeddings = []
valid_utterances = []
# Progress tracking for UI
total_utterances = len(utterances)
batch_size = max(1, total_utterances // 20) # Process in batches for progress updates
for i, (start, end, text) in enumerate(utterances):
if i % batch_size == 0:
yield i / total_utterances * 0.8
# Extract audio segment
start_sample = int(start * sample_rate)
end_sample = int(end * sample_rate)
if i % 50 == 0: # Reduce debug frequency for large files
print(f"🔍 DEBUG: Processing utterance {i}/{total_utterances}: [{start:.1f}-{end:.1f}s]")
if start_sample >= len(audio) or end_sample <= start_sample:
if i % 50 == 0: # Reduce debug spam
print(f"⚠️ DEBUG: Skipping invalid segment {i}: start_sample={start_sample}, end_sample={end_sample}, audio_len={len(audio)}")
continue # Skip invalid segments
segment = audio[start_sample:end_sample]
# Skip very short segments (< 0.5 seconds)
if len(segment) < sample_rate * 0.5:
continue
try:
# Extract embedding using Sherpa-ONNX with proper stream API
if not hasattr(embedding_extractor, "create_stream"):
raise RuntimeError("Embedding extractor missing create_stream(); sherpa_onnx not available?")
stream = embedding_extractor.create_stream()
if hasattr(stream, "accept_waveform"):
stream.accept_waveform(sample_rate, segment)
if hasattr(stream, "input_finished"):
stream.input_finished()
if not hasattr(embedding_extractor, "compute"):
raise RuntimeError("Embedding extractor missing compute(); sherpa_onnx not available?")
embedding = embedding_extractor.compute(stream)
if embedding is not None and len(embedding) > 0:
embeddings.append(embedding)
valid_utterances.append((start, end, text))
if i % 100 == 0: # Progress log every 100 segments
print(f"✅ Extracted {len(embeddings)} embeddings so far...")
except Exception as e:
if i % 50 == 0: # Reduce error spam
print(f"⚠️ Failed to extract embedding for segment {i}: {e}")
continue
if not embeddings:
logger.error("❌ No valid embeddings extracted")
print(f"❌ DEBUG: Failed to extract any embeddings from {len(utterances)} utterances")
return []
print(f"✅ DEBUG: Extracted {len(embeddings)} embeddings for clustering")
logger.info(f"✅ Extracted {len(embeddings)} embeddings, performing clustering...")
# Convert embeddings to numpy array
embeddings_array = np.array(embeddings)
print(f"✅ DEBUG: Embeddings array shape: {embeddings_array.shape}")
n_embeddings = embeddings_array.shape[0]
# Cas très faible nombre de segments: éviter tout clustering complexe
if n_embeddings < 3:
print("⚠️ DEBUG: Moins de 3 segments – utilisation d'une heuristique simple sans clustering")
assignments: List[Tuple[float, float, int]] = []
if n_embeddings == 1:
(s, e, _t) = valid_utterances[0]
assignments.append((s, e, 0))
elif n_embeddings == 2:
try:
from sklearn.metrics.pairwise import cosine_similarity # type: ignore
sim = float(cosine_similarity(embeddings_array[0:1], embeddings_array[1:2])[0, 0])
except Exception:
a = embeddings_array[0].astype(float)
b = embeddings_array[1].astype(float)
denom = (np.linalg.norm(a) * np.linalg.norm(b)) or 1e-9
sim = float(np.dot(a, b) / denom)
(s1, e1, _t1) = valid_utterances[0]
(s2, e2, _t2) = valid_utterances[1]
if sim >= 0.80:
assignments.append((s1, e1, 0))
assignments.append((s2, e2, 0))
print(f"🟢 DEBUG: Deux segments fusionnés en un seul speaker (similarité={sim:.3f})")
else:
assignments.append((s1, e1, 0))
assignments.append((s2, e2, 1))
print(f"🟦 DEBUG: Deux speakers distincts (similarité={sim:.3f})")
if progress_callback:
progress_callback(1.0)
yield 1.0
yield assignments
return
# Use enhanced diarization if available
if ENHANCED_DIARIZATION_AVAILABLE and n_embeddings >= 3:
print("🚀 Using enhanced diarization with adaptive clustering...")
logger.info("🚀 Using enhanced adaptive clustering...")
# Prepare utterances dict format for enhanced pipeline
utterances_dict = []
for i, (start, end, text) in enumerate(valid_utterances):
utterances_dict.append({
'start': start,
'end': end,
'text': text,
'index': i
})
if progress_callback:
progress_callback(0.9) # 90% for clustering
yield 0.9
# Run enhanced diarization
try:
enhanced_utterances, quality_report = enhance_diarization_pipeline(
embeddings_array, utterances_dict
)
# Display quality report
quality = quality_report['metrics']['quality']
confidence = quality_report['confidence']
n_speakers = quality_report['metrics']['n_speakers']
quality_msg = f"🎯 Diarization Quality: {confidence} confidence ({quality})"
if quality in ['excellent', 'good']:
logger.info(quality_msg)
elif quality == 'fair':
logger.warning(quality_msg)
else:
logger.error(quality_msg)
print(f"✅ Enhanced diarization quality report:")
print(f" - Quality: {quality}")
print(f" - Confidence: {confidence}")
print(f" - Silhouette score: {quality_report['metrics'].get('silhouette_score', 'N/A'):.3f}")
print(f" - Cluster balance: {quality_report['metrics'].get('cluster_balance', 'N/A'):.3f}")
print(f" - Speakers detected: {n_speakers}")
if quality_report['recommendations']:
logger.info("💡 " + "; ".join(quality_report['recommendations']))
# Convert back to tuple format
diarization_result = []
for utt in enhanced_utterances:
diarization_result.append((utt['start'], utt['end'], utt['speaker']))
# Si l'enhanced pipeline a tout fusionné en un seul segment alors qu'on avait peu de segments
# on restaure la granularité originale pour ne pas perdre l'alignement temporel côté UI/tests.
if (
len(diarization_result) == 1
and len(valid_utterances) == n_embeddings
and n_embeddings <= 4
):
single_speaker = diarization_result[0][2]
diarization_result = [
(s, e, single_speaker) for (s, e, _t) in valid_utterances
]
if progress_callback:
progress_callback(1.0) # 100% complete
yield 1.0
print(f"✅ DEBUG: Enhanced result - {n_speakers} speakers, {len(diarization_result)} segments")
logger.info(f"🎭 Enhanced clustering completed! Detected {n_speakers} speakers with {confidence} confidence")
yield diarization_result
return
except Exception as e:
logger.error(f"❌ Enhanced diarization failed: {e}")
print(f"❌ Enhanced diarization failed: {e}")
# Fall back to original clustering
# Fallback to original clustering
logger.warning("⚠️ Using fallback clustering")
print("⚠️ Using fallback clustering")
gen = faiss_clustering(
embeddings_array,
valid_utterances,
config_dict,
progress_callback,
)
try:
while True:
p = next(gen)
yield p
except StopIteration as e:
diarization_result = e.value
yield diarization_result
return
except Exception as e:
error_msg = f"❌ Speaker diarization failed: {e}"
print(error_msg)
import traceback
traceback.print_exc()
return []
def merge_transcription_with_diarization(
utterances: List[Tuple[float, float, str]],
diarization: List[Tuple[float, float, int]]
) -> List[Tuple[float, float, str, int]]:
"""
Merge ASR transcription with speaker diarization results
Args:
utterances: List of (start, end, text) from ASR
diarization: List of (start, end, speaker_id) from diarization
Returns:
List of (start, end, text, speaker_id) tuples
"""
if not diarization:
# No diarization available, assign speaker 0 to all
return [(start, end, text, 0) for start, end, text in utterances]
merged_result = []
for utt_start, utt_end, text in utterances:
# Find overlapping speaker segments
best_speaker = 0
max_overlap = 0.0
for dia_start, dia_end, speaker_id in diarization:
# Calculate overlap between utterance and diarization segment
overlap_start = max(utt_start, dia_start)
overlap_end = min(utt_end, dia_end)
if overlap_end > overlap_start:
overlap_duration = overlap_end - overlap_start
if overlap_duration > max_overlap:
max_overlap = overlap_duration
best_speaker = speaker_id
merged_result.append((utt_start, utt_end, text, best_speaker))
return merged_result
def merge_consecutive_utterances(
utterances_with_speakers: List[Tuple[float, float, str, int]],
max_gap: float = 1.0
) -> List[Tuple[float, float, str, int]]:
"""
Merge consecutive utterances from the same speaker into single utterances
Args:
utterances_with_speakers: List of (start, end, text, speaker_id) tuples
max_gap: Maximum gap in seconds between utterances to merge
Returns:
List of merged (start, end, text, speaker_id) tuples
"""
if not utterances_with_speakers:
return utterances_with_speakers
# Sort by start time to ensure correct order
sorted_utterances = sorted(utterances_with_speakers, key=lambda x: x[0])
merged = []
current_start, current_end, current_text, current_speaker = sorted_utterances[0]
for i in range(1, len(sorted_utterances)):
next_start, next_end, next_text, next_speaker = sorted_utterances[i]
# Check if we should merge: same speaker and gap is acceptable
gap = next_start - current_end
if current_speaker == next_speaker and gap <= max_gap:
# Merge the utterances
current_text = current_text.strip() + ' ' + next_text.strip()
current_end = next_end
print(f"✅ DEBUG: Merged consecutive utterances from Speaker {current_speaker}: [{current_start:.1f}-{current_end:.1f}s]")
else:
# Finalize current utterance and start new one
merged.append((current_start, current_end, current_text, current_speaker))
current_start, current_end, current_text, current_speaker = next_start, next_end, next_text, next_speaker
# Add the last utterance
merged.append((current_start, current_end, current_text, current_speaker))
print(f"✅ DEBUG: Utterance merging complete: {len(utterances_with_speakers)} → {len(merged)} utterances")
return merged
def format_speaker_transcript(
utterances_with_speakers: List[Tuple[float, float, str, int]]
) -> str:
"""
Format transcript with speaker labels
Args:
utterances_with_speakers: List of (start, end, text, speaker_id)
Returns:
Formatted transcript string
"""
if not utterances_with_speakers:
return ""
formatted_lines = []
current_speaker = None
for start, end, text, speaker_id in utterances_with_speakers:
# Add speaker label when speaker changes
if speaker_id != current_speaker:
formatted_lines.append(f"\n**Speaker {speaker_id + 1}:**")
current_speaker = speaker_id
# Add timestamped utterance
minutes = int(start // 60)
seconds = int(start % 60)
formatted_lines.append(f"[{minutes:02d}:{seconds:02d}] {text}")
return "\n".join(formatted_lines)
def get_diarization_stats(
utterances_with_speakers: List[Tuple[float, float, str, int]]
) -> dict:
"""
Calculate speaker diarization statistics
Returns:
Dictionary with speaking time per speaker and other stats
"""
if not utterances_with_speakers:
return {}
speaker_times = {}
speaker_utterances = {}
total_duration = 0
for start, end, text, speaker_id in utterances_with_speakers:
duration = end - start
total_duration += duration
if speaker_id not in speaker_times:
speaker_times[speaker_id] = 0
speaker_utterances[speaker_id] = 0
speaker_times[speaker_id] += duration
speaker_utterances[speaker_id] += 1
# Calculate percentages
stats = {
"total_speakers": len(speaker_times),
"total_duration": total_duration,
"speakers": {}
}
for speaker_id in sorted(speaker_times.keys()):
speaking_time = speaker_times[speaker_id]
percentage = (speaking_time / total_duration * 100) if total_duration > 0 else 0
stats["speakers"][speaker_id] = {
"speaking_time": speaking_time,
"percentage": percentage,
"utterances": speaker_utterances[speaker_id],
"avg_utterance_length": speaking_time / speaker_utterances[speaker_id] if speaker_utterances[speaker_id] > 0 else 0
}
return stats
def faiss_clustering(embeddings: np.ndarray,
utterances: list,
config_dict: dict,
progress_callback=None):
"""
Clustering via FAISS (K-means) ultra-rapide CPU.
Retourne la liste (start, end, speaker_id) compatible avec l'ancien code.
"""
try:
import faiss
except ImportError:
# FAISS absent → on retombe sur AgglomerativeClustering d'origine
gen = sklearn_fallback_clustering(embeddings, utterances, config_dict, progress_callback)
try:
while True:
p = next(gen)
yield p
except StopIteration as e:
return e.value
n_samples, dim = embeddings.shape
n_clusters = config_dict['num_speakers']
if n_clusters == -1:
# Si très peu d'échantillons, attribuer tout au locuteur 0
if n_samples < 3:
if progress_callback:
progress_callback(1.0)
yield 1.0
return [(s, e, 0) for (s, e, _t) in utterances]
max_k = min(10, max(2, n_samples // 2))
best_score, best_k, best_labels = -1.0, 2, None
emb32 = embeddings.astype(np.float32)
for k in range(2, max_k + 1):
if k >= n_samples: # éviter k == n_samples (silhouette invalide)
break
kmeans = faiss.Kmeans(dim, k, niter=25, verbose=False, seed=42)
kmeans.train(emb32)
_, lbls = kmeans.index.search(emb32, 1)
lbls = lbls.ravel()
uniq = set(lbls)
if 1 < len(uniq) < n_samples:
try:
sil = silhouette_score(embeddings, lbls)
except Exception:
sil = -1.0
else:
sil = -1.0
if sil > best_score:
best_score, best_k, best_labels = sil, k, lbls
if best_labels is None:
# Fallback trivial: tout un seul locuteur
if progress_callback:
progress_callback(1.0)
yield 1.0
return [(s, e, 0) for (s, e, _t) in utterances]
labels = best_labels
else:
kmeans = faiss.Kmeans(dim, min(n_clusters, n_samples), niter=20, verbose=False, seed=42)
kmeans.train(embeddings.astype(np.float32))
_, labels = kmeans.index.search(embeddings.astype(np.float32), 1)
labels = labels.ravel()
if progress_callback:
progress_callback(1.0)
yield 1.0
num_speakers = len(set(labels)) if labels is not None else 1
print(f"✅ DEBUG: FAISS clustering — {num_speakers} speakers, {len(utterances)} segments")
logger.info(f"🎭 FAISS clustering completed! Detected {num_speakers} speakers")
if labels is None:
return [(s, e, 0) for (s, e, _t) in utterances]
return [(start, end, int(lbl)) for (start, end, _), lbl in zip(utterances, labels)]
def sklearn_fallback_clustering(embeddings, utterances, config_dict, progress_callback=None):
"""
Ancienne voie sklearn conservée pour fallback sans FAISS.
"""
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_similarity
similarity_matrix = cosine_similarity(embeddings)
distance_matrix = 1 - similarity_matrix
n_clusters = config_dict['num_speakers']
if n_clusters == -1:
clustering = AgglomerativeClustering(
n_clusters=None,
distance_threshold=config_dict['cluster_threshold'],
metric='precomputed',
linkage='average'
)
else:
clustering = AgglomerativeClustering(
n_clusters=min(n_clusters, len(embeddings)),
metric='precomputed',
linkage='average'
)
if progress_callback:
progress_callback(0.9)
yield 0.9
labels = clustering.fit_predict(distance_matrix)
if progress_callback:
progress_callback(1.0)
yield 1.0
return [(start, end, int(lbl)) for (start, end, _), lbl in zip(utterances, labels)] |