File size: 11,022 Bytes
55a5521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM, AutoTokenizer, AutoModelForSequenceClassification,
T5ForConditionalGeneration, T5Tokenizer, pipeline
)
import warnings
warnings.filterwarnings("ignore")
class MultiModelHub:
def __init__(self):
self.models = {}
self.tokenizers = {}
self.pipelines = {}
self.model_configs = {
# Text Generation Models
"GPT-2 Indonesia": {
"model_name": "Lyon28/GPT-2",
"type": "text-generation",
"description": "GPT-2 fine-tuned untuk bahasa Indonesia"
},
"Tinny Llama": {
"model_name": "Lyon28/Tinny-Llama",
"type": "text-generation",
"description": "Compact language model untuk chat"
},
"Pythia": {
"model_name": "Lyon28/Pythia",
"type": "text-generation",
"description": "Pythia model untuk text generation"
},
"GPT-Neo": {
"model_name": "Lyon28/GPT-Neo",
"type": "text-generation",
"description": "GPT-Neo untuk creative writing"
},
"Distil GPT-2": {
"model_name": "Lyon28/Distil_GPT-2",
"type": "text-generation",
"description": "Lightweight GPT-2 variant"
},
"GPT-2 Tinny": {
"model_name": "Lyon28/GPT-2-Tinny",
"type": "text-generation",
"description": "Compact GPT-2 model"
},
# Classification Models
"BERT Tinny": {
"model_name": "Lyon28/Bert-Tinny",
"type": "text-classification",
"description": "BERT untuk klasifikasi teks"
},
"ALBERT Base": {
"model_name": "Lyon28/Albert-Base-V2",
"type": "text-classification",
"description": "ALBERT untuk analisis sentimen"
},
"DistilBERT": {
"model_name": "Lyon28/Distilbert-Base-Uncased",
"type": "text-classification",
"description": "Efficient BERT untuk classification"
},
"ELECTRA Small": {
"model_name": "Lyon28/Electra-Small",
"type": "text-classification",
"description": "ELECTRA untuk text understanding"
},
# Text-to-Text Model
"T5 Small": {
"model_name": "Lyon28/T5-Small",
"type": "text2text-generation",
"description": "T5 untuk berbagai NLP tasks"
}
}
def load_model(self, model_key):
"""Load model on-demand untuk menghemat memory"""
if model_key in self.pipelines:
return self.pipelines[model_key]
try:
config = self.model_configs[model_key]
model_name = config["model_name"]
model_type = config["type"]
# Load pipeline berdasarkan type
if model_type == "text-generation":
pipe = pipeline(
"text-generation",
model=model_name,
tokenizer=model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
elif model_type == "text-classification":
pipe = pipeline(
"text-classification",
model=model_name,
tokenizer=model_name
)
elif model_type == "text2text-generation":
pipe = pipeline(
"text2text-generation",
model=model_name,
tokenizer=model_name
)
else:
raise ValueError(f"Unsupported model type: {model_type}")
self.pipelines[model_key] = pipe
return pipe
except Exception as e:
return f"Error loading model {model_key}: {str(e)}"
def generate_text(self, model_key, prompt, max_length=100, temperature=0.7, top_p=0.9):
"""Generate text menggunakan model yang dipilih"""
try:
pipe = self.load_model(model_key)
if isinstance(pipe, str): # Error message
return pipe
config = self.model_configs[model_key]
if config["type"] == "text-generation":
result = pipe(
prompt,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=pipe.tokenizer.eos_token_id
)
generated_text = result[0]['generated_text']
# Remove prompt dari output
if generated_text.startswith(prompt):
generated_text = generated_text[len(prompt):].strip()
return generated_text
elif config["type"] == "text-classification":
result = pipe(prompt)
return f"Label: {result[0]['label']}, Score: {result[0]['score']:.4f}"
elif config["type"] == "text2text-generation":
result = pipe(prompt, max_length=max_length)
return result[0]['generated_text']
except Exception as e:
return f"Error generating text: {str(e)}"
def get_model_info(self, model_key):
"""Get informasi model"""
config = self.model_configs[model_key]
return f"**{model_key}**\n\nType: {config['type']}\n\nDescription: {config['description']}"
# Initialize hub
hub = MultiModelHub()
def chat_interface(model_choice, user_input, max_length, temperature, top_p, history):
"""Main chat interface"""
if not user_input.strip():
return history, ""
# Generate response
response = hub.generate_text(
model_choice,
user_input,
max_length=int(max_length),
temperature=temperature,
top_p=top_p
)
# Update history
history.append([user_input, response])
return history, ""
def get_model_description(model_choice):
"""Update model description"""
return hub.get_model_info(model_choice)
# Gradio Interface
with gr.Blocks(title="Lyon28 Multi-Model Hub", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π€ Lyon28 Multi-Model Hub
Deploy dan test semua 11 models Lyon28 dalam satu interface.
Pilih model, atur parameter, dan mulai chat!
"""
)
with gr.Row():
with gr.Column(scale=1):
# Model Selection
model_dropdown = gr.Dropdown(
choices=list(hub.model_configs.keys()),
value="GPT-2 Indonesia",
label="Select Model",
info="Choose which model to use"
)
# Model Info
model_info = gr.Markdown(
hub.get_model_info("GPT-2 Indonesia"),
label="Model Information"
)
# Parameters
gr.Markdown("### Generation Parameters")
max_length_slider = gr.Slider(
minimum=20,
maximum=500,
value=100,
step=10,
label="Max Length",
info="Maximum response length"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Creativity level (higher = more creative)"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p",
info="Nucleus sampling parameter"
)
with gr.Column(scale=2):
# Chat Interface
chatbot = gr.Chatbot(
label="Chat with Model",
height=400,
show_label=True
)
user_input = gr.Textbox(
placeholder="Type your message here...",
label="Your Message",
lines=2
)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Chat", variant="secondary")
# Example Prompts
gr.Markdown("### π‘ Example Prompts")
example_prompts = gr.Examples(
examples=[
["Ceritakan tentang Indonesia"],
["What is artificial intelligence?"],
["Write a Python function to sort a list"],
["Explain quantum computing in simple terms"],
["Create a short story about robots"],
],
inputs=user_input,
label="Click to use example prompts"
)
# Event Handlers
model_dropdown.change(
fn=get_model_description,
inputs=[model_dropdown],
outputs=[model_info]
)
send_btn.click(
fn=chat_interface,
inputs=[model_dropdown, user_input, max_length_slider, temperature_slider, top_p_slider, chatbot],
outputs=[chatbot, user_input]
)
user_input.submit(
fn=chat_interface,
inputs=[model_dropdown, user_input, max_length_slider, temperature_slider, top_p_slider, chatbot],
outputs=[chatbot, user_input]
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, user_input]
)
# Footer
with demo:
gr.Markdown(
"""
---
### π Features:
- **11 Models**: Akses semua model Lyon28 dalam satu tempat
- **Multiple Types**: Text generation, classification, dan text2text
- **Configurable**: Adjust temperature, top-p, dan max length
- **Memory Efficient**: Models loaded on-demand
- **API Ready**: Gradio auto-generates API endpoints
### π‘ API Usage:
```python
import requests
response = requests.post(
"https://your-space-name.hf.space/api/predict",
json={"data": ["GPT-2 Indonesia", "Hello world", 100, 0.7, 0.9, []]}
)
```
**Built by Lyon28** π₯
"""
)
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |