import gradio as gr from transformers import VitsModel, AutoTokenizer import torch import logging import spaces from typing import Tuple, Optional import numpy as np logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) if torch.cuda.is_available(): device = "cuda" logger.info("Using CUDA for inference.") elif torch.backends.mps.is_available(): device = "mps" logger.info("Using MPS for inference.") else: device = "cpu" logger.info("Using CPU for inference.") languages = ["bambara", "boomu", "dogon", "pular", "songhoy", "tamasheq"] examples = { "bambara": "An filɛ ni ye yɔrɔ minna ni an ye an sigi ka a layɛ yala an bɛ ka baara min kɛ ɛsike a kɛlen don ka Ɲɛ wa ?", "boomu": "Vunurobe wozomɛ pɛɛ, Poli we zo woro han Deeɓenu wara li Deeɓenu faralo zuun. Lo we baba a lo wara yi see ɓa Zuwifera ma ɓa Gɛrɛkela wa.", "dogon": "Pɔɔlɔ, kubɔ lugo joo le, bana dɛin dɛin le, inɛw Ama titiyaanw le digɛu, Ama, emɛ babe bɛrɛ sɔɔ sɔi.", "pular": "Miɗo ndaarde saabe Laamɗo e saabe Iisaa Almasiihu caroyoowo wuurɓe e maayɓe oo, miɗo ndaardire saabe gartol makko ka num e Laamu makko", "songhoy": "Haya ka se beenediyo kokoyteraydi go hima nda huukoy foo ka fatta ja subaahi ka taasi goykoyyo ngu rezẽ faridi se", "tamasheq": "Toḍă tăfukt ɣas, issăɣră-dd măssi-s n-ašĕkrĕš ănaẓraf-net, inn'-as: 'Ǝɣĕr-dd inaxdimăn, tĕẓlĕd-asăn, sănt s-wi dd-ĕšrăynen har tĕkkĕd wi dd-ăzzarnen." } class MalianTTS: def __init__(self, model_name: str = "MALIBA-AI/malian-tts"): self.model_name = model_name self.models = {} self.tokenizers = {} self._load_models() def _load_models(self): """Load all language models and tokenizers""" try: for lang in languages: logger.info(f"Loading model and tokenizer for {lang}...") self.models[lang] = VitsModel.from_pretrained( self.model_name, subfolder=f"models/{lang}" ).to(device) self.tokenizers[lang] = AutoTokenizer.from_pretrained( self.model_name, subfolder=f"models/{lang}" ) logger.info(f"Successfully loaded {lang}") except Exception as e: logger.error(f"Failed to load models: {str(e)}") raise Exception(f"Model loading failed: {str(e)}") def synthesize(self, language: str, text: str) -> Tuple[Optional[Tuple[int, np.ndarray]], Optional[str]]: """Generate audio from text for the specified language""" if not text.strip(): return None, "Please enter some text to synthesize." try: model = self.models[language] tokenizer = self.tokenizers[language] inputs = tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): output = model(**inputs).waveform waveform = output.squeeze().cpu().numpy() sample_rate = model.config.sampling_rate return (sample_rate, waveform), None except Exception as e: logger.error(f"Error during inference for {language}: {str(e)}") return None, f"Error generating audio: {str(e)}" # Initialize the TTS system tts_system = MalianTTS() @spaces.GPU() def generate_audio(language: str, text: str) -> Tuple[Optional[Tuple[int, np.ndarray]], str]: """ Generate audio from text using the specified language model. """ if not text.strip(): return None, "Please enter some text to synthesize." try: audio_output, error_msg = tts_system.synthesize(language, text) if error_msg: logger.error(f"TTS generation failed: {error_msg}") return None, error_msg logger.info(f"Successfully generated audio for {language}") return audio_output, "Audio generated successfully!" except Exception as e: logger.error(f"Audio generation failed: {e}") return None, f"Error: {str(e)}" def load_example(language: str) -> str: """Load example text for the selected language""" return examples.get(language, "No example available") def build_interface(): """ Builds the Gradio interface for Malian TTS. """ with gr.Blocks(title="MalianVoices") as demo: gr.Markdown( """ # MalianVoices: 🇲🇱 Text-to-Speech in Six Malian Languages Lightweight TTS for six Malian languages: **Bambara, Boomu, Dogon, Pular, Songhoy, Tamasheq**. - ✅ Real-time TTS with fast response ## How to Use 1. Pick a language from the dropdown 2. Enter your text or load an example 3. Click **"Generate Audio"** to listen """ ) with gr.Row(): language = gr.Dropdown( choices=languages, label="Language", value="bambara" ) with gr.Column(): text = gr.Textbox( label="Input Text", lines=5, placeholder="Type your text here..." ) with gr.Row(): example_btn = gr.Button("Load Example") generate_btn = gr.Button("Generate Audio", variant="primary") audio_output = gr.Audio(label="Generated Audio", type="numpy") status_msg = gr.Textbox(label="Status", interactive=False) # Footer gr.Markdown( """ By [sudoping01](https://huggingface.co/sudoping01), from [sudoping01/malian-tts](https://huggingface.co/sudoping01/malian-tts). Fine-tuned on Meta's MMS, CC BY-NC 4.0, non-commercial. """ ) # Connect buttons to functions generate_btn.click( fn=generate_audio, inputs=[language, text], outputs=[audio_output, status_msg] ) example_btn.click( fn=load_example, inputs=language, outputs=text ) return demo if __name__ == "__main__": logger.info("Starting the Gradio interface for MalianVoices TTS.") interface = build_interface() interface.launch() logger.info("Gradio interface running.")