File size: 9,995 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# ----------------------------------------------------------------------------
# VatLM: Visual-Audio-Text Pre-Training  with Unified Masked Prediction for Speech Representation Learning
# Github source: https://github.com/microsoft/SpeechT5/tree/main/VATLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq and av_hubert: https://github.com/facebookresearch/av_hubert
# 
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------

import itertools
import logging
import os
import sys
import time
from typing import Any, List, Optional, Union

import numpy as np

import torch
import torch.nn.functional as F
from fairseq.data import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset

DBG=True if len(sys.argv) == 1 else False

if DBG:
    import utils as custom_utils
    logging.basicConfig(
        format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        level=os.environ.get("LOGLEVEL", "DEBUG").upper(),
        stream=sys.stdout,
    )
else:
    from . import utils as custom_utils

logger = logging.getLogger(__name__)


def load_text(manifest_path, max_keep, min_keep, frame_rate, label_paths, label_rates, tol=0.1):

    n_long, n_short, n_unaligned = 0, 0, 0
    names, inds, sizes = [], [], []
    dur_from_label_list = []

    with open(manifest_path) as f:
        for ind, line in enumerate(f):
            items = line.strip().split("\t")
            frames = items[0]
            sz = int(frames)
            if min_keep is not None and sz < min_keep:
                n_short += 1
            elif max_keep is not None and sz > max_keep:
                n_long += 1
            else:
                inds.append(ind)
                sizes.append(sz)

    logger.info(
        (
            f"max_keep={max_keep}, min_keep={min_keep}, "
            f"loaded {len(inds)}, skipped {n_short} short and {n_long} long"
            f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
        )
    )

    return inds, sizes


def load_label(label_path, inds):
    with open(label_path) as f:
        labels = [line.rstrip() for line in f]
        labels = [labels[i] for i in inds]
    return labels

def load_phone_label(tsv, inds):
    with open(tsv) as f:
        labels = [line.rstrip() for line in f.readlines()]
        labels = [labels[i] for i in inds]
    return labels


def load_label_offset(label_path, inds):
    with open(label_path) as f:
        code_lengths = [len(line.encode("utf-8")) for line in f]
        offsets = list(itertools.accumulate([0] + code_lengths))
        offsets = [(offsets[i], offsets[i + 1]) for i in inds]
    return offsets



class TextHubertDataset(FairseqDataset):
    def __init__(
            self,
            manifest_path: str,
            sample_rate: float,
            label_paths: List[str],
            label_rates: Union[List[float], float],  # -1 for sequence labels
            pad_list: List[str],
            eos_list: List[str],
            label_processors: Optional[List[Any]] = None,
            phone_sequence_processors: Optional[List[Any]] = None,
            max_keep_sample_size: Optional[int] = None,
            min_keep_sample_size: Optional[int] = None,
            max_sample_size: Optional[int] = None,
            shuffle: bool = True,
            pad_audio: bool = False,
            normalize: bool = False,
            store_labels: bool = True,
            single_target: bool = False,
            stack_order_audio: int=1,
            skip_verify: bool=False,
            is_s2s=False,
    ):
        self.label_rates = (
            [label_rates for _ in range(len(label_paths))]
            if isinstance(label_rates, int)
            else label_rates
        )
        inds, self.sizes = load_text(manifest_path, max_keep_sample_size, min_keep_sample_size, frame_rate=sample_rate, label_paths=label_paths, label_rates=self.label_rates)
        self.sample_rate = sample_rate
        self.stack_order_audio = stack_order_audio
        self.shuffle = shuffle

        self.num_labels = len(label_paths)
        self.pad_list = pad_list
        self.eos_list = eos_list
        self.label_processors = label_processors
        self.phone_processors = phone_sequence_processors
        self.single_target = single_target
        self.store_labels = store_labels
        self.is_s2s = is_s2s


        if store_labels:
            self.label_list = [load_label(p, inds) for p in label_paths]
            self.phone_list = [load_phone_label(p, inds) for p in [manifest_path]]

        else:
            self.label_paths = label_paths
            self.label_offsets_list = [
                load_label_offset(p, inds) for p in label_paths
            ]

        self.max_sample_size = (
            max_sample_size if max_sample_size is not None else sys.maxsize
        )
        self.pad_audio = pad_audio
        self.normalize = normalize


    def get_label(self, index, label_idx):
        if self.store_labels:
            label = self.label_list[label_idx][index]
        else:
            with open(self.label_paths[label_idx]) as f:
                offset_s, offset_e = self.label_offsets_list[label_idx][index]
                f.seek(offset_s)
                label = f.read(offset_e - offset_s)

        if self.label_processors is not None:
            label = self.label_processors[label_idx](label)
        return label

    def get_labels(self, index):
        return [self.get_label(index, i) for i in range(self.num_labels)]

    def get_phone(self, index, label_idx):
        label = self.phone_list[label_idx][index]
        if self.phone_processors is not None:
            label = self.phone_processors[label_idx](label)
        return label

    def get_phones(self, index):
        return [self.get_phone(index, i) for i in range(1)]


    def __getitem__(self, index):
        labels = self.get_labels(index)
        phone_sequence_list = self.get_phones(index)

    
        return {"id": index, "label_list": labels, "phone_sequence_list": phone_sequence_list}


    def __len__(self):
        return len(self.sizes)


    def collater(self, samples):
        samples = [s for s in samples if s["id"] is not None]
        if len(samples) == 0:
            return {}

        targets_by_label = [
            [s["label_list"][i] for s in samples]
            for i in range(self.num_labels)
        ]
        targets_list, lengths_list, ntokens_list = self.collater_label(
            targets_by_label,
        )

        phone_sequence_list = [s["phone_sequence_list"] for s in samples]
        if phone_sequence_list[0] is None:
            phone_sequence_list = None
        
        targets_by_phone_label = [
            [s["phone_sequence_list"][i] for s in samples]
            for i in range(self.num_labels)
        ]
        targets_phone_list, lengths_phone_list, ntokens_phone_list = self.collater_phone_label(
            targets_by_phone_label,
        )

        net_input = {"source": None}
        batch = {
            "id": torch.LongTensor([s["id"] for s in samples]),
            "net_input": net_input,
        }

        if self.single_target:
            batch["target_lengths"] = lengths_list[0]
            batch["ntokens"] = ntokens_list[0]
            if self.is_s2s:
                batch['target'], net_input['prev_output_tokens'] = targets_list[0][0], targets_list[0][1]
            else:
                batch["target"] = targets_list[0]
        else:
            batch["target_lengths_list"] = lengths_list
            batch["ntokens_list"] = ntokens_list
            batch["target_list"] = targets_list 

        batch["extra_text_phone_list"] = targets_phone_list       

        return batch

    def collater_frm_label(
        self, targets, label_rate, pad
    ):
        lengths = torch.LongTensor([len(t) for t in targets])
        ntokens = lengths.sum().item()
        targets = data_utils.collate_tokens(
            targets, pad_idx=pad, left_pad=False
        )
        return targets, lengths, ntokens


    def collater_frm_phone_label(
        self, targets, pad
    ):

        lengths = torch.LongTensor([len(t) for t in targets])
        ntokens = lengths.sum().item()
        targets = data_utils.collate_tokens(
            targets, pad_idx=pad, left_pad=False
        )
        return targets, lengths, ntokens

    def collater_label(self, targets_by_label,):
        targets_list, lengths_list, ntokens_list = [], [], []
        itr = zip(targets_by_label, self.label_rates, self.pad_list)
        for targets, label_rate, pad in itr:
            targets, lengths, ntokens = self.collater_frm_label(
                targets, label_rate, pad
            )
            targets_list.append(targets)
            lengths_list.append(lengths)
            ntokens_list.append(ntokens)
        return targets_list, lengths_list, ntokens_list


    def collater_phone_label(self, targets_by_label):
        targets_list, lengths_list, ntokens_list = [], [], []
        itr = zip(targets_by_label, self.label_rates, self.pad_list)
        for targets, label_rate, pad in itr:
            targets, lengths, ntokens = self.collater_frm_phone_label(
                targets, pad
            )
            targets_list.append(targets)
            lengths_list.append(lengths)
            ntokens_list.append(ntokens)
        return targets_list, lengths_list, ntokens_list


    def num_tokens(self, index):
        return self.size(index)

    def size(self, index):
        if self.pad_audio:
            return self.sizes[index]
        return min(self.sizes[index], self.max_sample_size)

    def ordered_indices(self):
        if self.shuffle:
            order = [np.random.permutation(len(self))]
        else:
            order = [np.arange(len(self))]

        order.append(self.sizes)
        return np.lexsort(order)[::-1]