File size: 28,824 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
"""
    Modified from 
    https://github.com/facebookresearch/fairseq/blob/main/fairseq/tasks/hubert_pretraining.py
    https://github.com/facebookresearch/fairseq/blob/main/fairseq/tasks/denoising.py

    Pre-training task for YiTrans@IWSLT2022
    Step1: Combine Speech2C and multilingual BART
    Step2: Combine ASR and multilingual MT
"""
import logging
import os
import sys
from typing import Dict, List, Optional, Tuple
from pathlib import Path

import numpy as np
from argparse import Namespace
from collections import OrderedDict

from dataclasses import dataclass, field
from fairseq.data import Dictionary, encoders
from fairseq.data import (
    Dictionary,
    data_utils,
    StripTokenDataset,
    PrependTokenDataset,
    AppendTokenDataset,
    FairseqDataset,
    iterators,
    ResamplingDataset,
)
from fairseq.data.audio.speech_to_text_joint_dataset import S2TJointDataConfig
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.dataclass.configs import FairseqDataclass
from fairseq.tasks import register_task
from fairseq.tasks.fairseq_task import FairseqTask
from fairseq.dataclass.constants import ChoiceEnum

from fairseq.tasks.hubert_pretraining import HubertPretrainingConfig
from yitrans_iwslt22.data.load_langpair_dataset import load_langpair_dataset
from yitrans_iwslt22.data.lang_pair_mask_dataset import LangPairMaskDataset
from yitrans_iwslt22.data.speech2c_dataset import Speech2cDataset
from yitrans_iwslt22.data.denoising_dataset import DenoisingDatasetLang
from yitrans_iwslt22.data.concat_dataset import ConcatDataset
from yitrans_iwslt22.data.multimodal_corpus_dataset import MultiCorpusDataset


logger = logging.getLogger(__name__)
TOKENIZER_CHOICES = ChoiceEnum(["sentencepiece", "hubert_letters", "none"])

def _lang_token(lang: str):
    return "<lang:{}>".format(lang)

def _lang_token_index(dic: Dictionary, lang: str):
    """Return language token index."""
    idx = dic.index(_lang_token(lang))
    assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang)
    return idx

class LabelEncoder(object):
    def __init__(self, dictionary: Dictionary) -> None:
        self.dictionary = dictionary

    def __call__(self, label: str) -> List[str]:
        return self.dictionary.encode_line(
            label, append_eos=False, add_if_not_exist=False,
        )

@dataclass
class TextPretrainingConfig(FairseqDataclass):    
    """
        Convert the legacy config of BART to the Dataclass style
    """
    text_data: Optional[str] = field(
        default=None,
        metadata={
            "help": "if set, path to text data directory",
        },
    )
    seed: Optional[int] = field(
        default=1,
        metadata={
            "help": "for ordered_indices in MulticorpusDataset",
        },
    )
    tokens_per_sample: Optional[int] = field(
        default=512,
        metadata={
            "help": "max number of total tokens over all segments per sample for dataset",
        },
    )
    sample_break_mode: Optional[str] = field(
        default="eos",
        metadata={
            "help": "mode for breaking sentence",
        },
    )
    mask: Optional[float] = field(
        default=0.3,
        metadata={
            "help": "fraction of words/subwords that will be masked",
        },
    )
    leave_unmasked_prob: float = field(
        default=0.1,
        metadata={"help": "probability that a masked token is unmasked"},
    )
    mask_random: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "instead of using [MASK], use random token this often",
        },
    )
    freq_weighted_replacement: bool = field(
        default=False,
        metadata={"help": "sample random replacement words based on word frequencies"},
    )
    mask_whole_words: bool = field(
        default=False,
        metadata={"help": "mask whole words; you may also want to set --bpe"},
    )
    mask_multiple_length: int = field(
        default=1,
        metadata={"help": "repeat the mask indices multiple times"},
    )
    mask_stdev: float = field(
        default=0.0,
        metadata={"help": "stdev of the mask length"},
    )
    shorten_method: Optional[str] = field(
        default="none",
        metadata={
            "help": "if not none, shorten sequences that exceed tokens_per_sample",
            "choices": "none/truncate/random_crop"
        },
    )
    shorten_data_split_list: Optional[str] = field(
        default="",
        metadata={
            "help": "comma_separated list of dataset splits to apply shortening to, e.g., train,valid (default: all dataset splits)",
        },
    )
    ### below hypra-parameters is used in BART
    insert: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "insert this percentage of additional random tokens",
        },
    )
    permute: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "take this proportion of subwords and permute them",
        },
    )
    rotate: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "rotate this proportion of inputs",
        },
    )
    poisson_lambda: Optional[float] = field(
        default=3,
        metadata={
            "help": "randomly shuffle sentences for this proportion of inputs",
        },
    )
    permute_sentences: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "shuffle this proportion of sentences in all inputs",
        },
    )
    mask_length: Optional[str] = field(
        default="span-poisson",
        metadata={
            "help": "mask length to choose",
            "choice": "subword/word/span-poisson"
        },
    )
    replace_length: Optional[int] = field(
        default=1,
        metadata={
            "help": "when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)",
        },
    )
    shuffle_instance: Optional[bool] = field(
        default=False,
        metadata={"help": "shuffle instance"},
    )
    max_source_positions: Optional[int] = field(
        default=1024,
        metadata={"help": "max number of tokens in the source sequence"},
    )
    max_target_positions: Optional[int] = field(
        default=1024,
        metadata={"help": "max number of tokens in the target sequence"},
    )
    bpe: Optional[str] = field(
        default="sentencepiece",
        metadata={
            "help": "will wrapped by the text_data_config yaml",
        },
    )
    data_config: Optional[str] = field(
        default=None,
        metadata={
            "help": "a config yaml specify the bpe model of text data",
        },
    )
    text_maxtokens_ratio: Optional[float] = field(
        default=1.0,
        metadata={
            "help": "for text, max_tokens = max_tokens * text_maxtokens_ratio / 320 ",
        },
    )
    prepend_tgt_lang_tag: bool = field(
        default=True,
        metadata={"help": "prepend tgt_lang_tag to replace <eos>"},
    )
    mask_text_ratio: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "mask_text_ratio, for paired data",
        },
    )


@dataclass
class JointPretrainingConfig(HubertPretrainingConfig):
    store_labels: Optional[bool] = field(
        default=False,
        metadata={"help": "store spm labels in memory, should be true when fine-tune with bpe"},
    )
    add_decoder: bool = field(
        default=False,
        metadata={"help": "whether to add decoder for CE Loss on code"},
    )
    split_modality_batch: bool = field(
        default=False,
        metadata={"help": "whether create all samples of different modalities in a batch"},
    )
    speech_tgt_lang: str = field(
        default="",
        metadata={"help": "prepend <tgt-id> to prev_output_tokens to replace <eos>, only used for decoder"},
    )
    speech_sampling_alpha: float = field(
        default=0.2,
        metadata={
            "help": "Hyper-parameter alpha = 1/T for temperature-based speech resampling."
            "(alpha = 1 for no resampling)"
        },
    )
    text_sampling_alpha: float = field(
        default=0.2,
        metadata={
            "help": "Hyper-parameter alpha = 1/T for temperature-based text resampling."
            "(alpha = 1 for no resampling)"
        },
    )
    hubert_tokenizer: Optional[TOKENIZER_CHOICES] = field(
        default="none",
        metadata={"help": "which tokenizer for processing text"},
    )
    sp_path: Optional[str] = field(
        default=None,
        metadata={"help": "sentencepiece model path if using bpe tokenizer"},
    )
    text_cfg: TextPretrainingConfig = TextPretrainingConfig()


@register_task("iwslt_joint_pretraining", dataclass=JointPretrainingConfig)
class JointPretrainingTask(FairseqTask):
    cfg: JointPretrainingConfig
    def __init__(
        self,
        cfg: JointPretrainingConfig,
    ) -> None:
        super().__init__(cfg)

        logger.info(f"current directory is {os.getcwd()}")
        logger.info(f"JointPretrainingTask Config {cfg}")

        self.cfg = cfg
        self.fine_tuning = cfg.fine_tuning
        self.blank_symbol = "<s>"

        self.state.add_factory("hubert_tokenizer", self.build_tokenizer)
        self.state.add_factory("text_dictionary", self.load_text_dictionary)
        self.state.add_factory("text_src_dictionary", self.load_text_src_dictionary)
        if cfg.fine_tuning:
            self.state.add_factory("target_dictionary", self.load_dictionaries)
        else:
            self.state.add_factory("dictionaries", self.load_dictionaries)

        if cfg.text_cfg.data_config is not None:
            self.text_data_cfg = S2TJointDataConfig(Path(f"{cfg.text_cfg.text_data}/{cfg.text_cfg.data_config}"))
            self.cfg.text_cfg.bpe = self.text_data_cfg.bpe_tokenizer["bpe"]

    @property
    def source_dictionary(self) -> Optional[Dictionary]:
        return None

    @property
    def target_dictionary(self) -> Optional[Dictionary]:
        return self.state.target_dictionary

    @property
    def dictionaries(self) -> List[Dictionary]:
        return self.state.dictionaries

    @property
    def text_dictionary(self) -> Optional[Dictionary]:
        return self.state.text_dictionary

    @property
    def text_src_dictionary(self) -> Optional[Dictionary]:
        return self.state.text_src_dictionary

    @property
    def hubert_tokenizer(self):
        return self.state.hubert_tokenizer

    def load_dictionaries(self):
        label_dir = self.cfg.data if self.cfg.label_dir is None else self.cfg.label_dir
        dictionaries = [Dictionary.load(f"{label_dir}/dict.{label}.txt") for label in self.cfg.labels]
        return dictionaries[0] if self.cfg.fine_tuning else dictionaries
    
    def load_text_dictionary(self):
        tgt_dict_path = f"{self.cfg.text_cfg.text_data}/{self.text_data_cfg.vocab_filename}"
        if not os.path.isfile(tgt_dict_path):
            raise FileNotFoundError(f"Dict not found: {tgt_dict_path}")
        text_dictionary = Dictionary.load(tgt_dict_path)
        self.mask_idx = text_dictionary.add_symbol("<mask>")
        return text_dictionary
    
    def load_text_src_dictionary(self):
        return self.load_text_dictionary()

    @classmethod
    def setup_task(
        cls, cfg: JointPretrainingConfig, **kwargs
    ) -> "JointPretrainingTask":
        return cls(cfg)

    def get_label_dir(self) -> str:
        if self.cfg.label_dir is None:
            return self.cfg.data
        return self.cfg.label_dir

    def load_dataset(self, split: str, epoch=1, **kwargs) -> None:
        """
            Create Wav dataset for audio, and Index dataset for phonemized text, 
            then concatenate them to by fairseq.data.multi_corpus_dataset.MultiCorpusDataset.
        """
        if len(split.split("+")) == 1:
            speech_splits = split.split(",")
            has_text = False
        else:
            has_text = True
            speech_splits, text_splits = split.split("+")
            speech_splits = speech_splits.split(",")
            speech_splits = [item for item in speech_splits if item != '']
            text_splits = text_splits.split(",")
            text_splits = [item for item in text_splits if item != '']
            logging.info(f"text_splits: {text_splits}")
        logging.info(f"speech_splits: {speech_splits}")

        ### 1, create a speech dataset using Speech2cDataset (modified from HubertDataset)
        dicts = [self.target_dictionary] if self.cfg.fine_tuning else self.dictionaries
        pad_list = [dict.pad() for dict in dicts]
        eos_list = [dict.eos() for dict in dicts]
        procs = [LabelEncoder(dict) for dict in dicts]
        if self.cfg.speech_tgt_lang != "":
            tgt_lang_idx = _lang_token_index(dicts[0], self.cfg.speech_tgt_lang)
            logger.info(f"Will prepend <{tgt_lang_idx}> at the beginning of prev_output_tokens to replace <eos>")
        else:
            tgt_lang_idx = None

        speech_dataset = None
        mono_dataset = None
        paired_dataset = None

        speech_datasets = []
        for speech_split in speech_splits:
            # hubert v1: pad_audio=True, random_crop=False;
            paths = [f"{self.get_label_dir()}/{speech_split}.{l}" for l in self.cfg.labels]
            speech_datasets.append( 
                Speech2cDataset(
                    f"{self.cfg.data}/{speech_split}.tsv",
                    sample_rate=self.cfg.sample_rate,
                    label_paths=paths,
                    label_rates=self.cfg.label_rate,
                    pad_list=pad_list,
                    eos_list=eos_list,
                    label_processors=procs,
                    max_keep_sample_size=self.cfg.max_keep_size,
                    min_keep_sample_size=self.cfg.min_sample_size,
                    max_sample_size=self.cfg.max_sample_size,
                    pad_audio=self.cfg.pad_audio,
                    normalize=self.cfg.normalize,
                    store_labels=self.cfg.store_labels,
                    random_crop=self.cfg.random_crop,
                    single_target=self.cfg.single_target,
                    tgt_dict=dicts[0],
                    add_decoder=self.cfg.add_decoder,
                    fine_tuning=self.cfg.fine_tuning,
                    tgt_lang_idx=tgt_lang_idx,
                    tokenizer=self.hubert_tokenizer,
                )
            )

        if len(speech_datasets) > 1:
            if 'train' in speech_splits[0] and self.cfg.speech_sampling_alpha != 1.0:
                size_ratios = self._get_size_ratios(
                    speech_splits, [len(s) for s in speech_datasets], alpha=self.cfg.speech_sampling_alpha
                )
                speech_datasets = [
                    ResamplingDataset(
                        d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0)
                    )
                    for d, r in zip(speech_datasets, size_ratios)
                ]
            speech_dataset = ConcatDataset(speech_datasets)
        elif len(speech_datasets) == 1:
            speech_dataset = speech_datasets[0]

        ### 2, create text mono/paired datasets
        logger.info(f"split {split} has unpaired text? {has_text}")
        if not has_text:
            assert speech_dataset is not None
            self.datasets[split] = speech_dataset
            return

        text_pairs = [ item for item in text_splits if len(item.split(".")[-1].split("-")) > 1 ]
        text_monos = [ item for item in text_splits if len(item.split(".")[-1].split("-")) == 1 ]
        logging.info(f"text_monos: {text_monos}")
        logging.info(f"text_pairs: {text_pairs}")

        ### 2.1, create text mono dataset using DenoisingDatasetLang
        mono_datasets = []
        if len(text_monos) > 0:
            for text_split in text_monos:
                lang = text_split.split('.')[-2]    ## e.g. mono_deduped_filt_sort.de_DE.de_DE
                mask_whole_words = (
                    get_whole_word_mask(Namespace(**self.text_data_cfg.bpe_tokenizer), self.text_dictionary)
                    if self.cfg.text_cfg.mask_whole_words and lang in ("en_XX", "de_DE")
                    else None
                )

                mono_dataset = data_utils.load_indexed_dataset(
                    f"{self.cfg.text_cfg.text_data}/{text_split}",
                    self.text_dictionary,
                    combine=True,
                )
                mono_dataset = StripTokenDataset(mono_dataset, self.text_dictionary.eos())
                mono_dataset = maybe_shorten_dataset(
                    mono_dataset,
                    "xxxxx",
                    self.cfg.text_cfg.shorten_data_split_list,
                    self.cfg.text_cfg.shorten_method,
                    self.cfg.text_cfg.tokens_per_sample - 2,
                    self.cfg.text_cfg.seed,
                )
                logger.info("loaded {} samples from: {}".format(len(mono_dataset), text_split))
                ### prepend bos and eos to dataset
                mono_dataset = PrependTokenDataset(mono_dataset, self.text_dictionary.bos())
                mono_dataset = AppendTokenDataset(mono_dataset, self.text_dictionary.eos())
                mono_dataset = DenoisingDatasetLang(
                    mono_dataset,
                    mono_dataset.sizes,
                    self.text_dictionary,
                    self.mask_idx,
                    mask_whole_words,
                    shuffle=self.cfg.text_cfg.shuffle_instance,
                    seed=self.cfg.text_cfg.seed,
                    args=self.cfg.text_cfg,
                    tgt_lang_idx=_lang_token_index(self.text_dictionary, lang) if self.cfg.text_cfg.prepend_tgt_lang_tag else None,
                )
                mono_datasets.append(mono_dataset)

        ### 2.2, create paired text datasets using load_langpair_dataset
        paired_datasets = []
        if len(text_pairs) > 0:
            for text_pair in text_pairs:
                text_split, lp = text_pair.rsplit('.', 1)       ## e.g. "mt8corpus.de_DE-en_EN"
                src, tgt = lp.split("-")
                paired_dataset = load_langpair_dataset(
                    self.cfg.text_cfg.text_data,
                    text_split,
                    src,
                    self.text_src_dictionary,
                    tgt,
                    self.text_dictionary,
                    combine=True,
                    dataset_impl=None,
                    upsample_primary=1,
                    left_pad_source=False,
                    left_pad_target=False,
                    max_source_positions=self.cfg.text_cfg.tokens_per_sample,
                    max_target_positions=self.cfg.text_cfg.tokens_per_sample,
                    prepend_bos=False,
                    load_alignments=False,
                    append_source_id=True if self.cfg.text_cfg.prepend_tgt_lang_tag else False,
                    lang_format="<lang:{}>" if self.cfg.text_cfg.prepend_tgt_lang_tag else "[{}]",
                )
                if self.cfg.text_cfg.mask_text_ratio > 0:
                    # add mask
                    noise_token_id = self.text_src_dictionary.index("<mask>")
                    paired_dataset = LangPairMaskDataset(
                        paired_dataset,
                        src_bos=self.text_src_dictionary.bos(),
                        src_eos=self.text_src_dictionary.eos(),
                        noise_id=noise_token_id,
                        mask_ratio=self.cfg.text_cfg.mask_text_ratio,
                    )
                paired_datasets.append(paired_dataset)


        ### 3rd, compose a MultiCorpusDataset
        dataset_dict, max_positions_dict, distributions, max_tokens_ratios = self.resample_multi_modality_dataset(
            speech_dataset, mono_datasets, paired_datasets, text_monos, text_pairs, epoch=epoch,
        )
        self.datasets[split] = MultiCorpusDataset(
            dataset_dict,
            max_positions=max_positions_dict,
            distribution=distributions,
            max_tokens_ratio=max_tokens_ratios,
            seed=self.cfg.text_cfg.seed,
            sort_indices=True,
            check_length=False,
        )

    def max_positions(self) -> Tuple[int, int]:
        return (sys.maxsize, sys.maxsize)

    def filter_indices_by_size(
        self, indices: np.array, *args, **kwargs
    ) -> np.array:
        return indices

    def get_batch_iterator(
        self,
        dataset,
        max_tokens=None,
        max_sentences=None,
        max_positions=None,
        ignore_invalid_inputs=False,
        required_batch_size_multiple=1,
        seed=1,
        num_shards=1,
        shard_id=0,
        num_workers=0,
        epoch=1,
        data_buffer_size=0,
        disable_iterator_cache=False,
        skip_remainder_batch=False,
        grouped_shuffling=False,
        update_epoch_batch_itr=False,
    ):
        """
        A warpper of Faiseq.task.get_batch_iterator, only for pre-training, see
            
            https://github.com/facebookresearch/fairseq/blob/main/fairseq/tasks/fairseq_task.py
            
        Returns:
            ~fairseq.iterators.EpochBatchIterator: a batched iterator over the
                given dataset split
        """
        if not isinstance(dataset, MultiCorpusDataset):
            return super().get_batch_iterator(
                dataset,
                max_tokens=max_tokens,
                max_sentences=max_sentences,
                max_positions=max_positions,
                ignore_invalid_inputs=ignore_invalid_inputs,
                required_batch_size_multiple=required_batch_size_multiple,
                seed=seed,
                num_shards=num_shards,
                shard_id=shard_id,
                num_workers=num_workers,
                epoch=epoch,
                data_buffer_size=data_buffer_size,
                disable_iterator_cache=disable_iterator_cache,
                skip_remainder_batch=skip_remainder_batch,
                grouped_shuffling=grouped_shuffling,
                update_epoch_batch_itr=update_epoch_batch_itr,
            )

        can_reuse_epoch_itr = (
            not disable_iterator_cache
            and not update_epoch_batch_itr
            and self.can_reuse_epoch_itr(dataset)
        )
        if can_reuse_epoch_itr and dataset in self.dataset_to_epoch_iter:
            logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch))
            return self.dataset_to_epoch_iter[dataset]

        assert isinstance(dataset, FairseqDataset)

        # initialize the dataset with the correct starting epoch
        dataset.set_epoch(epoch)

        # get indices ordered by example size
        with data_utils.numpy_seed(seed):
            indices = dataset.ordered_indices()

        # create mini-batches with given size constraints
        batch_sampler = dataset.get_batch_sampler(
            indices,
            num_shards,
            seed,
            max_tokens=max_tokens,
            max_sentences=max_sentences,
            required_batch_size_multiple=required_batch_size_multiple,
            split_modality_batch=self.cfg.split_modality_batch,
        )

        # return a reusable, sharded iterator
        epoch_iter = iterators.EpochBatchIterator(
            dataset=dataset,
            collate_fn=dataset.collater,
            batch_sampler=batch_sampler,
            seed=seed,
            num_shards=num_shards,
            shard_id=shard_id,
            num_workers=num_workers,
            epoch=epoch,
            buffer_size=data_buffer_size,
            skip_remainder_batch=skip_remainder_batch,
            disable_shuffling=True,
            grouped_shuffling=grouped_shuffling,
        )

        if can_reuse_epoch_itr:
            self.dataset_to_epoch_iter[dataset] = epoch_iter

        return epoch_iter

    @classmethod
    def _get_size_ratios(cls, ids: List[str], sizes: List[int], alpha: float = 1.0):
        """Size ratios for temperature-based sampling
        (https://arxiv.org/abs/1907.05019)"""
        _sizes = np.array(sizes)
        prob = _sizes / _sizes.sum()
        smoothed_prob = prob ** alpha
        smoothed_prob = smoothed_prob / smoothed_prob.sum()
        size_ratio = (smoothed_prob * _sizes.sum()) / _sizes

        o_str = str({_i: f"{prob[i]:.3f}" for i, _i in enumerate(ids)})
        logger.info(f"original sampling probability: {o_str}")
        p_str = str({_i: f"{smoothed_prob[i]:.3f}" for i, _i in enumerate(ids)})
        logger.info(f"balanced sampling probability: {p_str}")
        sr_str = str({_id: f"{size_ratio[i]:.3f}" for i, _id in enumerate(ids)})
        logger.info(f"balanced sampling size ratio: {sr_str}")
        return size_ratio.tolist()

    def resample_multi_modality_dataset(self, speech_dataset, mono_datasets, paired_datasets, mono_splits, paired_splits, epoch=1, train=True):
        assert len(mono_datasets+paired_datasets) > 0, f"No text data loaded!"

        text_datasets = mono_datasets+paired_datasets
        if len(text_datasets) > 1 and self.cfg.text_sampling_alpha != 1.0:
            size_ratios = self._get_size_ratios(
                mono_splits + paired_splits, [len(s) for s in mono_datasets + paired_datasets], alpha=self.cfg.text_sampling_alpha
            )
            text_datasets = [
                ResamplingDataset(
                    d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0)
                )
                for d, r in zip(text_datasets, size_ratios)
            ]

        mono_datasets = text_datasets[:len(mono_datasets)]
        paired_datasets = text_datasets[len(mono_datasets):]
        dataset_list = [speech_dataset]
        for datasets in [mono_datasets, paired_datasets]:
            if len(datasets) > 0:
                dataset_list.append(ConcatDataset(datasets))
            else:
                dataset_list.append(None)

        ### match speech/text datasets according to modality
        dataset_dict = OrderedDict((name, d) for name, d in zip(["speech", "text_mono", "text_paired"], dataset_list) if d is not None)
        max_positions_dict = OrderedDict((name, None) for name in dataset_dict.keys())
        if "text_paired" in dataset_dict:
            max_positions_dict["text_paired"] = (self.cfg.text_cfg.tokens_per_sample, self.cfg.text_cfg.tokens_per_sample)
        dataset_lens = np.array([len(dataset) for dataset in dataset_dict.values()])
        dataset_avg_sample_lens = np.array([
            sum([dataset.num_tokens(i) for i in np.random.randint(low=0, high=len(dataset), size=10000)]) / 10000.0 
            for dataset in dataset_dict.values()
        ])
        max_tokens_ratios = [1.0 / 320 / self.cfg.text_cfg.text_maxtokens_ratio] * len(dataset_dict)

        if not "speech" in dataset_dict:
            distributions = [l / sum(dataset_lens) for l in dataset_lens]
        else:
            ## we just keep the batches of speech and non-speech the same
            first_ratio = dataset_lens[0] / sum(dataset_lens)
            distributions = [max_tokens_ratios[0] * dataset_avg_sample_lens[0] / l for l in dataset_avg_sample_lens]
            text_total = sum(dataset_lens[1:])
            distributions = [1.2 * d * n / text_total for d, n in zip(distributions, dataset_lens)]
            max_tokens_ratios[0] = 1.0
            distributions[0] = 1.0
            distributions = [first_ratio * d for d in distributions]

        logging.info(f"Number samples of datasets is {dataset_lens}")
        logging.info(f"Avg sample length of datasets is {dataset_avg_sample_lens}")
        logging.info(f"Sampling distributions is {distributions}")
        logging.info(f"Maxtokens ratio is {max_tokens_ratios}")
        return dataset_dict, max_positions_dict, distributions, max_tokens_ratios

    def build_tokenizer(self, cfg=None):
        logger.info(f"tokenizer: {self.cfg.hubert_tokenizer}")
        if self.cfg.hubert_tokenizer != "none":
            return encoders.build_bpe(Namespace(**{"bpe": self.cfg.hubert_tokenizer, "sentencepiece_model": self.cfg.sp_path}))
        else:
            return None