File size: 10,576 Bytes
56238f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import random

import torch
import copy
import timm
import torchvision.transforms.v2.functional
from torch.nn import Parameter

from src.utils.no_grad import no_grad
from typing import Callable, Iterator, Tuple
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms import Normalize
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
from src.diffusion.base.sampling import BaseSampler

def inverse_sigma(alpha, sigma):
    return 1/sigma**2
def snr(alpha, sigma):
    return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
    return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
    return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
    return 1

from PIL import Image
import numpy as np

def time_shift_fn(t, timeshift=1.0):
    return t/(t+(1-t)*timeshift)

def random_crop(images, resize, crop_size):
    images = torchvision.transforms.v2.functional.resize(images, size=resize, antialias=True)
    h, w = crop_size
    h0 = random.randint(0, images.shape[2]-h)
    w0 = random.randint(0, images.shape[3]-w)
    return images[:, :, h0:h0+h, w0:w0+w]

# class EulerSolver:
#     def __init__(
#             self,
#             num_steps: int,
#             *args,
#             **kwargs
#     ):
#         super().__init__(*args, **kwargs)
#         self.num_steps = num_steps
#         self.timesteps = torch.linspace(0.0, 1, self.num_steps+1, dtype=torch.float32)
#
#     def __call__(self, net, noise, timeshift, condition):
#         steps = time_shift_fn(self.timesteps[:, None], timeshift[None, :]).to(noise.device, noise.dtype)
#         x = noise
#         trajs = [x, ]
#         for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])):
#             dt = t_next - t_cur
#             v = net(x, t_cur, condition)
#             x = x + v*dt[:, None, None, None]
#             x = x.to(noise.dtype)
#             trajs.append(x)
#         return trajs
#
# class NeuralSolver(nn.Module):
#     def __init__(
#             self,
#             num_steps: int,
#             *args,
#             **kwargs
#     ):
#         super().__init__(*args, **kwargs)
#         self.num_steps = num_steps
#         self.timedeltas = torch.nn.Parameter(torch.ones((num_steps))/num_steps, requires_grad=True)
#         self.coeffs = torch.nn.Parameter(torch.zeros((num_steps, num_steps)), requires_grad=True)
#         # self.golden_noise = torch.nn.Parameter(torch.randn((1, 3, 1024, 1024))*0.01, requires_grad=True)
#
#     def forward(self, net, noise, timeshift, condition):
#         batch_size, c, height, width = noise.shape
#         # golden_noise = torch.nn.functional.interpolate(self.golden_noise, size=(height, width), mode='bicubic', align_corners=False)
#         x = noise # + golden_noise.repeat(batch_size, 1, 1, 1)
#         x_trajs = [x, ]
#         v_trajs = []
#         dts = self.timedeltas.softmax(dim=0)
#         print(dts)
#         coeffs = self.coeffs
#         t_cur = torch.zeros((batch_size,), dtype=noise.dtype, device=noise.device)
#         for i, dt in enumerate(dts):
#             pred_v = net(x, t_cur, condition)
#             v = torch.zeros_like(pred_v)
#             v_trajs.append(pred_v)
#             acc_coeffs = 0.0
#             for j in range(i):
#                 acc_coeffs = acc_coeffs + coeffs[i, j]
#                 v = v + coeffs[i, j]*v_trajs[j]
#             v = v + (1-acc_coeffs)*v_trajs[i]
#             x = x + v*dt
#             x = x.to(noise.dtype)
#             x_trajs.append(x)
#             t_cur = t_cur +  dt
#         return x_trajs

import re
import os
import unicodedata
def clean_filename(s):
    # 去除首尾空格和点号
    s = s.strip().strip('.')
    # 转换 Unicode 字符为 ASCII 形式
    s = unicodedata.normalize('NFKD', s).encode('ASCII', 'ignore').decode('ASCII')
    illegal_chars = r'[/]'
    reserved_names = set()
    # 替换非法字符为下划线
    s = re.sub(illegal_chars, '_', s)
    # 合并连续的下划线
    s = re.sub(r'_{2,}', '_', s)
    # 转换为小写
    s = s.lower()
    # 检查是否为保留文件名
    if s.upper() in reserved_names:
        s = s + '_'
    # 限制文件名长度
    max_length = 200
    s = s[:max_length]
    if not s:
        return 'untitled'
    return s

def prompt_augment(prompts, random_prompts, replace_prob=0.5, front_append_prob=0.5, back_append_prob=0.5, delete_prob=0.5,):
    random_prompts = random.choices(random_prompts, k=len(prompts))
    new_prompts = []
    for prompt, random_prompt in zip(prompts, random_prompts):
        if random.random() < replace_prob:
            new_prompt = random_prompt
        else:
            new_prompt = prompt
        if random.random() < front_append_prob:
            new_prompt = random_prompt + ", " + new_prompt
        if random.random() < back_append_prob:
            new_prompt = new_prompt + ", " + random_prompt
        if random.random() < delete_prob:
            new_length = random.randint(1, len(new_prompt.split(",")))
            new_prompt = ", ".join(new_prompt.split(",")[:new_length])
        new_prompts.append(new_prompt)
    return new_prompts

class AdvODETrainer(BaseTrainer):
    def __init__(
            self,
            scheduler: BaseScheduler,
            loss_weight_fn:Callable=constant,
            adv_loss_weight: float=0.5,
            gan_loss_weight: float=0.5,
            im_encoder:nn.Module=None,
            mm_encoder:nn.Module=None,
            adv_head:nn.Module=None,
            random_crop_size=448,
            max_image_size=512,
            *args,
            **kwargs
    ):
        super().__init__(*args, **kwargs)
        self.scheduler = scheduler
        self.loss_weight_fn = loss_weight_fn
        self.adv_loss_weight = adv_loss_weight
        self.gan_loss_weight = gan_loss_weight
        self.im_encoder = im_encoder
        self.mm_encoder = mm_encoder
        self.adv_head = adv_head

        self.real_buffer = []
        self.fake_buffer = []
        self.random_crop_size = random_crop_size
        self.max_image_size = max_image_size

        no_grad(self.im_encoder)
        no_grad(self.mm_encoder)
        self.random_prompts = ["hahahaha", ]
        self.saved_filenames = []

    def preproprocess(self, x, condition, uncondition, metadata):
        self.uncondition = uncondition
        return super().preproprocess(x, condition, uncondition, metadata)

    def _impl_trainstep(self, net, ema_net, solver, x, y, metadata=None):
        batch_size, c, height, width = x.shape
        noise = torch.randn_like(x)
        _, trajs = solver(net, noise, y, self.uncondition, return_x_trajs=True, return_v_trajs=False)
        with torch.no_grad():
           _, ref_trajs = solver(ema_net, noise, y, self.uncondition, return_x_trajs=True, return_v_trajs=False)

        fake_x0 = (trajs[-1]+1)/2
        fake_x0 = fake_x0.clamp(0, 1)
        prompt = metadata["prompt"]
        self.random_prompts.extend(prompt)
        self.random_prompts = self.random_prompts[-50:]
        filename = clean_filename(prompt[0])+".png"
        Image.fromarray((fake_x0[0].permute(1, 2, 0).detach().cpu().float() * 255).to(torch.uint8).numpy()).save(f'{filename}')
        self.saved_filenames.append(filename)
        if len(self.saved_filenames) > 100:
            os.remove(self.saved_filenames[0])
            self.saved_filenames.pop(0)

        real_x0 = metadata["raw_image"]
        fake_x0 = random_crop(fake_x0, resize=self.max_image_size, crop_size=(self.random_crop_size, self.random_crop_size))
        real_x0 = random_crop(real_x0, resize=self.max_image_size, crop_size=(self.random_crop_size, self.random_crop_size))

        fake_im_features = self.im_encoder(fake_x0, resize=False)
        fake_mm_features = self.mm_encoder(fake_x0, prompt, resize=True)
        fake_im_features_detach = fake_im_features.detach()
        fake_mm_features_detach = fake_mm_features.detach()

        with torch.no_grad():
            real_im_features = self.im_encoder(real_x0, resize=False)
            real_mm_features = self.mm_encoder(real_x0, prompt, resize=True)
            not_match_prompt = prompt_augment(prompt, self.random_prompts)#random.choices(self.random_prompts, k=batch_size)
            real_not_match_mm_features = self.mm_encoder(real_x0, not_match_prompt, resize=True)
            self.real_buffer.append((real_im_features, real_mm_features))
            self.fake_buffer.append((fake_im_features_detach, fake_mm_features_detach))
            self.fake_buffer.append((real_im_features, real_not_match_mm_features))
            while len(self.real_buffer) > 10:
                self.real_buffer.pop(0)
            while len(self.fake_buffer) > 10:
                self.fake_buffer.pop(0)

        real_features_gan = torch.cat([x[0] for x in self.real_buffer], dim=0)
        real_conditions_gan = torch.cat([x[1] for x in self.real_buffer], dim=0)
        fake_features_gan = torch.cat([x[0] for x in self.fake_buffer], dim=0)
        fake_conditions_gan = torch.cat([x[1] for x in self.fake_buffer], dim=0)
        real_score_gan = self.adv_head(real_features_gan, real_conditions_gan)
        fake_score_gan = self.adv_head(fake_features_gan, fake_conditions_gan)

        fake_score_adv = self.adv_head(fake_im_features, fake_mm_features)
        fake_score_detach_adv = self.adv_head(fake_im_features_detach, fake_mm_features_detach)


        loss_gan = -torch.log(1 - fake_score_gan).mean() - torch.log(real_score_gan).mean()
        acc_real = (real_score_gan > 0.5).float()
        acc_fake = (fake_score_gan < 0.5).float()
        loss_adv = -torch.log(fake_score_adv)
        loss_adv_hack = torch.log(fake_score_detach_adv)

        trajs_loss = 0.0
        for x_t, ref_x_t in zip(trajs, ref_trajs):
            trajs_loss = trajs_loss + torch.abs(x_t - ref_x_t).mean()
        trajs_loss = trajs_loss / len(trajs)

        out = dict(
            trajs_loss=trajs_loss.mean(),
            adv_loss=loss_adv.mean(),
            gan_loss=loss_gan.mean(),
            acc_real=acc_real.mean(),
            acc_fake=acc_fake.mean(),
            loss=trajs_loss.mean() + self.adv_loss_weight*(loss_adv.mean() + loss_adv_hack.mean())+self.gan_loss_weight*loss_gan.mean(),
        )
        return out

    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        self.adv_head.state_dict(
            destination=destination,
            prefix=prefix + "adv_head.",
            keep_vars=keep_vars)