Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,576 Bytes
56238f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import random
import torch
import copy
import timm
import torchvision.transforms.v2.functional
from torch.nn import Parameter
from src.utils.no_grad import no_grad
from typing import Callable, Iterator, Tuple
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms import Normalize
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
from src.diffusion.base.sampling import BaseSampler
def inverse_sigma(alpha, sigma):
return 1/sigma**2
def snr(alpha, sigma):
return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
return 1
from PIL import Image
import numpy as np
def time_shift_fn(t, timeshift=1.0):
return t/(t+(1-t)*timeshift)
def random_crop(images, resize, crop_size):
images = torchvision.transforms.v2.functional.resize(images, size=resize, antialias=True)
h, w = crop_size
h0 = random.randint(0, images.shape[2]-h)
w0 = random.randint(0, images.shape[3]-w)
return images[:, :, h0:h0+h, w0:w0+w]
# class EulerSolver:
# def __init__(
# self,
# num_steps: int,
# *args,
# **kwargs
# ):
# super().__init__(*args, **kwargs)
# self.num_steps = num_steps
# self.timesteps = torch.linspace(0.0, 1, self.num_steps+1, dtype=torch.float32)
#
# def __call__(self, net, noise, timeshift, condition):
# steps = time_shift_fn(self.timesteps[:, None], timeshift[None, :]).to(noise.device, noise.dtype)
# x = noise
# trajs = [x, ]
# for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])):
# dt = t_next - t_cur
# v = net(x, t_cur, condition)
# x = x + v*dt[:, None, None, None]
# x = x.to(noise.dtype)
# trajs.append(x)
# return trajs
#
# class NeuralSolver(nn.Module):
# def __init__(
# self,
# num_steps: int,
# *args,
# **kwargs
# ):
# super().__init__(*args, **kwargs)
# self.num_steps = num_steps
# self.timedeltas = torch.nn.Parameter(torch.ones((num_steps))/num_steps, requires_grad=True)
# self.coeffs = torch.nn.Parameter(torch.zeros((num_steps, num_steps)), requires_grad=True)
# # self.golden_noise = torch.nn.Parameter(torch.randn((1, 3, 1024, 1024))*0.01, requires_grad=True)
#
# def forward(self, net, noise, timeshift, condition):
# batch_size, c, height, width = noise.shape
# # golden_noise = torch.nn.functional.interpolate(self.golden_noise, size=(height, width), mode='bicubic', align_corners=False)
# x = noise # + golden_noise.repeat(batch_size, 1, 1, 1)
# x_trajs = [x, ]
# v_trajs = []
# dts = self.timedeltas.softmax(dim=0)
# print(dts)
# coeffs = self.coeffs
# t_cur = torch.zeros((batch_size,), dtype=noise.dtype, device=noise.device)
# for i, dt in enumerate(dts):
# pred_v = net(x, t_cur, condition)
# v = torch.zeros_like(pred_v)
# v_trajs.append(pred_v)
# acc_coeffs = 0.0
# for j in range(i):
# acc_coeffs = acc_coeffs + coeffs[i, j]
# v = v + coeffs[i, j]*v_trajs[j]
# v = v + (1-acc_coeffs)*v_trajs[i]
# x = x + v*dt
# x = x.to(noise.dtype)
# x_trajs.append(x)
# t_cur = t_cur + dt
# return x_trajs
import re
import os
import unicodedata
def clean_filename(s):
# 去除首尾空格和点号
s = s.strip().strip('.')
# 转换 Unicode 字符为 ASCII 形式
s = unicodedata.normalize('NFKD', s).encode('ASCII', 'ignore').decode('ASCII')
illegal_chars = r'[/]'
reserved_names = set()
# 替换非法字符为下划线
s = re.sub(illegal_chars, '_', s)
# 合并连续的下划线
s = re.sub(r'_{2,}', '_', s)
# 转换为小写
s = s.lower()
# 检查是否为保留文件名
if s.upper() in reserved_names:
s = s + '_'
# 限制文件名长度
max_length = 200
s = s[:max_length]
if not s:
return 'untitled'
return s
def prompt_augment(prompts, random_prompts, replace_prob=0.5, front_append_prob=0.5, back_append_prob=0.5, delete_prob=0.5,):
random_prompts = random.choices(random_prompts, k=len(prompts))
new_prompts = []
for prompt, random_prompt in zip(prompts, random_prompts):
if random.random() < replace_prob:
new_prompt = random_prompt
else:
new_prompt = prompt
if random.random() < front_append_prob:
new_prompt = random_prompt + ", " + new_prompt
if random.random() < back_append_prob:
new_prompt = new_prompt + ", " + random_prompt
if random.random() < delete_prob:
new_length = random.randint(1, len(new_prompt.split(",")))
new_prompt = ", ".join(new_prompt.split(",")[:new_length])
new_prompts.append(new_prompt)
return new_prompts
class AdvODETrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn:Callable=constant,
adv_loss_weight: float=0.5,
gan_loss_weight: float=0.5,
im_encoder:nn.Module=None,
mm_encoder:nn.Module=None,
adv_head:nn.Module=None,
random_crop_size=448,
max_image_size=512,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
self.adv_loss_weight = adv_loss_weight
self.gan_loss_weight = gan_loss_weight
self.im_encoder = im_encoder
self.mm_encoder = mm_encoder
self.adv_head = adv_head
self.real_buffer = []
self.fake_buffer = []
self.random_crop_size = random_crop_size
self.max_image_size = max_image_size
no_grad(self.im_encoder)
no_grad(self.mm_encoder)
self.random_prompts = ["hahahaha", ]
self.saved_filenames = []
def preproprocess(self, x, condition, uncondition, metadata):
self.uncondition = uncondition
return super().preproprocess(x, condition, uncondition, metadata)
def _impl_trainstep(self, net, ema_net, solver, x, y, metadata=None):
batch_size, c, height, width = x.shape
noise = torch.randn_like(x)
_, trajs = solver(net, noise, y, self.uncondition, return_x_trajs=True, return_v_trajs=False)
with torch.no_grad():
_, ref_trajs = solver(ema_net, noise, y, self.uncondition, return_x_trajs=True, return_v_trajs=False)
fake_x0 = (trajs[-1]+1)/2
fake_x0 = fake_x0.clamp(0, 1)
prompt = metadata["prompt"]
self.random_prompts.extend(prompt)
self.random_prompts = self.random_prompts[-50:]
filename = clean_filename(prompt[0])+".png"
Image.fromarray((fake_x0[0].permute(1, 2, 0).detach().cpu().float() * 255).to(torch.uint8).numpy()).save(f'{filename}')
self.saved_filenames.append(filename)
if len(self.saved_filenames) > 100:
os.remove(self.saved_filenames[0])
self.saved_filenames.pop(0)
real_x0 = metadata["raw_image"]
fake_x0 = random_crop(fake_x0, resize=self.max_image_size, crop_size=(self.random_crop_size, self.random_crop_size))
real_x0 = random_crop(real_x0, resize=self.max_image_size, crop_size=(self.random_crop_size, self.random_crop_size))
fake_im_features = self.im_encoder(fake_x0, resize=False)
fake_mm_features = self.mm_encoder(fake_x0, prompt, resize=True)
fake_im_features_detach = fake_im_features.detach()
fake_mm_features_detach = fake_mm_features.detach()
with torch.no_grad():
real_im_features = self.im_encoder(real_x0, resize=False)
real_mm_features = self.mm_encoder(real_x0, prompt, resize=True)
not_match_prompt = prompt_augment(prompt, self.random_prompts)#random.choices(self.random_prompts, k=batch_size)
real_not_match_mm_features = self.mm_encoder(real_x0, not_match_prompt, resize=True)
self.real_buffer.append((real_im_features, real_mm_features))
self.fake_buffer.append((fake_im_features_detach, fake_mm_features_detach))
self.fake_buffer.append((real_im_features, real_not_match_mm_features))
while len(self.real_buffer) > 10:
self.real_buffer.pop(0)
while len(self.fake_buffer) > 10:
self.fake_buffer.pop(0)
real_features_gan = torch.cat([x[0] for x in self.real_buffer], dim=0)
real_conditions_gan = torch.cat([x[1] for x in self.real_buffer], dim=0)
fake_features_gan = torch.cat([x[0] for x in self.fake_buffer], dim=0)
fake_conditions_gan = torch.cat([x[1] for x in self.fake_buffer], dim=0)
real_score_gan = self.adv_head(real_features_gan, real_conditions_gan)
fake_score_gan = self.adv_head(fake_features_gan, fake_conditions_gan)
fake_score_adv = self.adv_head(fake_im_features, fake_mm_features)
fake_score_detach_adv = self.adv_head(fake_im_features_detach, fake_mm_features_detach)
loss_gan = -torch.log(1 - fake_score_gan).mean() - torch.log(real_score_gan).mean()
acc_real = (real_score_gan > 0.5).float()
acc_fake = (fake_score_gan < 0.5).float()
loss_adv = -torch.log(fake_score_adv)
loss_adv_hack = torch.log(fake_score_detach_adv)
trajs_loss = 0.0
for x_t, ref_x_t in zip(trajs, ref_trajs):
trajs_loss = trajs_loss + torch.abs(x_t - ref_x_t).mean()
trajs_loss = trajs_loss / len(trajs)
out = dict(
trajs_loss=trajs_loss.mean(),
adv_loss=loss_adv.mean(),
gan_loss=loss_gan.mean(),
acc_real=acc_real.mean(),
acc_fake=acc_fake.mean(),
loss=trajs_loss.mean() + self.adv_loss_weight*(loss_adv.mean() + loss_adv_hack.mean())+self.gan_loss_weight*loss_gan.mean(),
)
return out
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
self.adv_head.state_dict(
destination=destination,
prefix=prefix + "adv_head.",
keep_vars=keep_vars)
|