wangshuai6
init
56238f0
import torch
import json
import copy
import os
from torch.utils.data import Dataset
from PIL import Image
def dpg_save_fn(image, metadata, root_path):
image_path = os.path.join(root_path, str(metadata['filename'])+"_"+str(metadata['seed'])+".png")
Image.fromarray(image).save(image_path)
class DPGDataset(Dataset):
def __init__(self, prompt_path, num_samples_per_instance, latent_shape):
self.latent_shape = latent_shape
self.prompt_path = prompt_path
prompt_files = os.listdir(self.prompt_path)
self.prompts = []
self.filenames = []
for prompt_file in prompt_files:
with open(os.path.join(self.prompt_path, prompt_file)) as fp:
self.prompts.append(fp.readline().strip())
self.filenames.append(prompt_file.replace('.txt', ''))
self.num_instances = len(self.prompts)
self.num_samples_per_instance = num_samples_per_instance
self.num_samples = self.num_instances * self.num_samples_per_instance
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
instance_idx = idx // self.num_samples_per_instance
sample_idx = idx % self.num_samples_per_instance
generator = torch.Generator().manual_seed(sample_idx)
metadata = dict(
prompt=self.prompts[instance_idx],
filename=self.filenames[instance_idx],
seed=sample_idx,
save_fn=dpg_save_fn,
)
condition = metadata["prompt"]
latent = torch.randn(self.latent_shape, generator=generator, dtype=torch.float32)
return latent, condition, metadata