Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import torch | |
import torch.nn as nn | |
import timm | |
from torchvision.transforms import Normalize | |
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD | |
import os | |
class IndentityMapping(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, resize=True): | |
b, c, h, w = x.shape | |
x = x.reshape(b, c, h*w).transpose(1, 2) | |
return x | |
class DINOv2(nn.Module): | |
def __init__(self, weight_path:str, base_patch_size=16): | |
super(DINOv2, self).__init__() | |
directory = os.path.dirname(weight_path) | |
weight_path = os.path.basename(weight_path) | |
self.encoder = torch.hub.load( | |
directory, | |
weight_path, | |
source="local", | |
skip_validation=True | |
) | |
self.encoder = self.encoder.to(torch.bfloat16) | |
self.pos_embed = copy.deepcopy(self.encoder.pos_embed) | |
self.encoder.head = torch.nn.Identity() | |
self.patch_size = self.encoder.patch_embed.patch_size | |
self.precomputed_pos_embed = dict() | |
self.base_patch_size = base_patch_size | |
self.encoder.compile() | |
def forward(self, x, resize=True): | |
b, c, h, w = x.shape | |
x = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)(x) | |
if resize: | |
x = torch.nn.functional.interpolate(x, (int(14*h/self.base_patch_size), int(14*w/self.base_patch_size)), mode='bicubic') | |
feature = self.encoder.forward_features(x)['x_norm_patchtokens'] | |
feature = feature.to(torch.bfloat16) | |
return feature | |
from transformers import CLIPModel, CLIPTokenizer | |
class CLIP(nn.Module): | |
def __init__(self, weight_path:str): | |
super(CLIP, self).__init__() | |
self.model = CLIPModel.from_pretrained(weight_path).to(torch.bfloat16) | |
self.tokenizer = CLIPTokenizer.from_pretrained(weight_path) | |
self.height = self.model.config.vision_config.image_size | |
self.width = self.model.config.vision_config.image_size | |
self.model.vision_model.compile() | |
self.model.text_model.compile() | |
def forward(self, x, text, resize=True): | |
tokens = self.tokenizer(text, truncation=True, return_tensors='pt', padding="max_length", max_length=self.tokenizer.model_max_length).input_ids.cuda() | |
text_output = self.model.text_model(input_ids=tokens).last_hidden_state | |
text_output = self.model.text_projection(text_output) | |
text_output = torch.nn.functional.normalize(text_output, dim=-1, p=2) | |
if resize: | |
x = torch.nn.functional.interpolate(x, (self.height, self.width), mode='bicubic') | |
x = Normalize(OPENAI_CLIP_MEAN, OPENAI_CLIP_STD)(x) | |
vision_output = self.model.vision_model(x).last_hidden_state[:, 1:] | |
vision_output = self.model.visual_projection(vision_output) | |
vision_output = torch.nn.functional.normalize(vision_output, dim=-1, p=2) | |
output = torch.bmm(vision_output, text_output.transpose(1, 2)) | |
return output | |
from transformers import SiglipModel, GemmaTokenizer, SiglipTokenizer | |
class SigLIP(nn.Module): | |
def __init__(self, weight_path:str): | |
super(SigLIP, self).__init__() | |
if "siglip2" in weight_path: | |
self.tokenizer = GemmaTokenizer.from_pretrained(weight_path) | |
else: | |
self.tokenizer = SiglipTokenizer.from_pretrained(weight_path) | |
self.model = SiglipModel.from_pretrained(weight_path).to(torch.bfloat16) | |
self.mean = 0.5 | |
self.std = 0.5 | |
self.model.vision_model.compile() | |
self.model.text_model.compile() | |
def forward(self, x, text, resize=True): | |
tokens = self.tokenizer(text, truncation=True, return_tensors='pt', padding="max_length", max_length=64).input_ids.cuda() | |
text_output = self.model.text_model(input_ids=tokens).last_hidden_state | |
text_output = torch.nn.functional.normalize(text_output, dim=-1, p=2) | |
if resize: | |
x = torch.nn.functional.interpolate(x, (self.height, self.width), mode='bicubic') | |
x = (x - self.mean)/self.std | |
vision_output = self.model.vision_model(x).last_hidden_state | |
vision_output = torch.nn.functional.normalize(vision_output, dim=-1, p=2) | |
output = torch.bmm(vision_output, text_output.transpose(1, 2)) | |
return output | |
from transformers import SiglipVisionModel | |
class SigLIPVision(nn.Module): | |
def __init__(self, weight_path:str, base_patch_size=16): | |
super(SigLIPVision, self).__init__() | |
self.model = SiglipVisionModel.from_pretrained(weight_path).to(torch.bfloat16) | |
self.height = self.model.config.image_size | |
self.width = self.model.config.image_size | |
self.patch_size = self.model.config.patch_size | |
self.base_patch_size = base_patch_size | |
self.model.compile() | |
self.mean = 0.5 | |
self.std = 0.5 | |
def forward(self, x, resize=True): | |
if resize: | |
h, w = x.shape[-2:] | |
new_h = int(self.patch_size * h / self.base_patch_size) | |
new_w = int(self.patch_size * w / self.base_patch_size) | |
x = torch.nn.functional.interpolate(x, (new_h, new_w), mode='bicubic') | |
x = (x - self.mean)/self.std | |
vision_output = self.model.vision_model(x).last_hidden_state | |
return vision_output |