Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Embed(nn.Module): | |
def __init__( | |
self, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
norm_layer = None, | |
bias: bool = True, | |
): | |
super().__init__() | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.proj = nn.Linear(in_chans, embed_dim, bias=bias) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
x = self.proj(x) | |
x = self.norm(x) | |
return x |