Spaces:
Running
Running
File size: 46,945 Bytes
fe79a14 532ac38 fe79a14 532ac38 fe79a14 16ff4b4 fe79a14 0babe14 fe79a14 0babe14 fe79a14 0babe14 fe79a14 0babe14 fe79a14 0babe14 fe79a14 0babe14 fe79a14 0babe14 fe79a14 2f6c110 fe79a14 2f6c110 7ba9a06 2f6c110 fe79a14 2f6c110 fe79a14 2f6c110 fe79a14 0babe14 fe79a14 2f6c110 fe79a14 16ff4b4 fe79a14 2f6c110 40447c8 2f6c110 40447c8 2f6c110 40447c8 2f6c110 16ff4b4 0babe14 fe79a14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
import gradio as gr
import pandas as pd
import logging
from pathlib import Path
import yaml
from typing import Dict, List, Union, Optional, Any
import numpy as np
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(module)s - %(message)s"
)
logger = logging.getLogger(__name__)
LEADERBOARD_DIR = Path(__file__).resolve().parent
CONFIG_FILE_PATH = LEADERBOARD_DIR / "leaderboard_config.yaml"
DATA_DIR = LEADERBOARD_DIR / "boards_data"
class ColumnConfig:
def __init__(self, config_path: Path):
self.config_path = config_path
self.column_display_names_map: Dict[str, str] = {}
self.task_tab_names_map: Dict[str, str] = {}
default_task_tab_names = {
"all": "Overall", "mt_bench": "MT-Bench", "ifeval": "IFEval",
"MMLU": "MMLU", "persian_csr": "PerCoR",
"persian_nlu": "Persian NLU", "persian_nlg": "Persian NLG",
}
default_column_names = {
"Model Name": "Model", "model_url": "URL",
"parameters_count": "⚙️ Params", "source_type": "Source",
"Average": "Average", "Rank": "🏆 Rank", "score_mean": "score_mean (main)",
"strict_instruction_accuracy": "strict_instruction_accuracy (main)", "acc": "accuracy (main)",
"nlu_score": "nlu_score (main)", "nlg_score": "nlg_score (main)",
}
if self.config_path and self.config_path.exists():
try:
with open(self.config_path, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
loaded_column_names = config.get('column_names', {})
self.column_display_names_map = {**default_column_names, **loaded_column_names}
loaded_task_names = config.get('task_display_names', {})
self.task_tab_names_map = {**default_task_tab_names, **loaded_task_names}
except Exception as e:
logger.error(f"Error loading UI name configurations from {self.config_path}: {e}. Using defaults.")
self.column_display_names_map = default_column_names
self.task_tab_names_map = default_task_tab_names
else:
logger.warning(f"UI Name configuration file '{self.config_path.name}' not found. Using defaults.")
self.column_display_names_map = default_column_names
self.task_tab_names_map = default_task_tab_names
def get_column_display_name(self, original_col_name: str) -> str:
return self.column_display_names_map.get(original_col_name, original_col_name.replace("_", " "))
def get_task_tab_name(self, task_key: str) -> str:
return self.task_tab_names_map.get(task_key, task_key.replace("_", " "))
def rename_dataframe_columns(self, df: pd.DataFrame) -> pd.DataFrame:
if df.empty: return df
rename_dict = {col: self.get_column_display_name(col) for col in df.columns}
return df.rename(columns=rename_dict)
class LeaderboardApp:
def __init__(self, config_path: Path):
self.config_path = config_path
self.column_config = ColumnConfig(config_path)
self.raw_dataframes: Dict[str, pd.DataFrame] = {}
self.model_display_configs: Dict[str, Dict[str, str]] = {}
self.model_identifier_column: str = "Model Name"
self.main_scores_map: Dict[str, str] = {}
self.allowed_null_columns_in_average: List[str] = ["Model Name", "model_url", "parameters_count", "source_type"]
self.tab_processing_order: List[str] = []
self.numeric_score_columns_for_bolding: List[str] = []
self.columns_to_hide: List[str] = ["model_url", "source_type"]
self.parent_child_task_map: Dict[str, List[str]] = {}
self._load_global_settings()
self._load_model_display_configs()
def _load_global_settings(self) -> None:
if self.config_path and self.config_path.exists():
try:
with open(self.config_path, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
settings = config.get('global_settings', {})
self.model_identifier_column = settings.get('model_identifier_column', self.model_identifier_column)
self.main_scores_map = settings.get('main_scores_map', self.main_scores_map)
self.allowed_null_columns_in_average = settings.get('allowed_null_columns_in_average', self.allowed_null_columns_in_average)
self.tab_processing_order = settings.get('tab_processing_order', [])
self.columns_to_hide = settings.get('columns_to_hide', self.columns_to_hide)
self.parent_child_task_map = settings.get('parent_child_task_map', {})
default_numeric_bold_cols = list(self.main_scores_map.values()) if self.main_scores_map else []
self.numeric_score_columns_for_bolding = settings.get('numeric_score_columns_for_bolding', default_numeric_bold_cols)
if not self.numeric_score_columns_for_bolding and default_numeric_bold_cols:
self.numeric_score_columns_for_bolding = default_numeric_bold_cols
if 'all' in self.main_scores_map and self.main_scores_map.get('all') and \
self.main_scores_map['all'] not in self.numeric_score_columns_for_bolding:
self.numeric_score_columns_for_bolding.append(self.main_scores_map['all'])
self.numeric_score_columns_for_bolding = list(set(self.numeric_score_columns_for_bolding))
except Exception as e:
logger.error(f"Error loading global settings from {self.config_path}: {e}. Using defaults.")
else:
logger.error(f"Main configuration file '{getattr(self.config_path, 'name', 'config_path')}' not found. Critical settings will use defaults.")
def _load_model_display_configs(self) -> None:
if self.config_path and self.config_path.exists():
try:
with open(self.config_path, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
self.model_display_configs = config.get('model_display_configs', {})
except Exception as e:
logger.error(f"Error loading model display configs: {e}")
else:
logger.warning(f"Model display config section not found in {self.config_path}.")
def load_data(self) -> None:
logger.info(f"Loading all data from: {DATA_DIR}")
if not DATA_DIR.exists() or not DATA_DIR.is_dir():
logger.error(f"Data directory {DATA_DIR} not found. Cannot load data.")
return
all_jsonl_files = list(DATA_DIR.glob("*.jsonl"))
if not all_jsonl_files:
logger.warning(f"No .jsonl files found in {DATA_DIR}. No data will be loaded.")
return
for file_path in all_jsonl_files:
task_key = file_path.stem
try:
self.raw_dataframes[task_key] = pd.read_json(file_path, lines=True)
logger.info(f"Successfully loaded '{file_path.name}' for task key '{task_key}'.")
except Exception as e:
self.raw_dataframes[task_key] = pd.DataFrame()
logger.error(f"Error loading '{file_path.name}' for task '{task_key}': {e}")
configured_task_keys = set(self.tab_processing_order)
for parent, children in self.parent_child_task_map.items():
configured_task_keys.add(parent)
if children:
configured_task_keys.update(children)
for key in configured_task_keys:
if key not in self.raw_dataframes:
self.raw_dataframes[key] = pd.DataFrame()
logger.warning(f"No data file found for configured task key '{key}'. Initialized as empty.")
def _get_benchmark_columns(self, df: pd.DataFrame) -> List[str]:
if df.empty: return []
excluded_cols = self.allowed_null_columns_in_average + ["Rank", "model_url", "Average"]
return [col for col in df.columns if col not in excluded_cols and pd.api.types.is_numeric_dtype(df[col])]
def handle_nulls_in_averages(self) -> None:
logger.info("Skipping handle_nulls_in_averages as refresh.py is expected to handle it.")
pass
def _calculate_non_null_benchmark_score_count(self, df_row: pd.Series, benchmark_cols: List[str]) -> int:
return df_row[benchmark_cols].notna().sum()
def generate_model_rankings(self) -> None:
logger.info("Generating model rankings for each tab.")
if not self.model_identifier_column:
logger.error("`model_identifier_column` is not set. Cannot perform ranking.")
return
for task_key, df in self.raw_dataframes.items():
if df.empty: continue
ranked_df = df.copy()
main_score_col_for_tab = self.main_scores_map.get(task_key)
if not main_score_col_for_tab or main_score_col_for_tab not in ranked_df.columns:
logger.warning(f"No main score column for task '{task_key}'. Ranking skipped.")
ranked_df["Rank"] = pd.NA
self.raw_dataframes[task_key] = ranked_df
continue
ranked_df[main_score_col_for_tab] = pd.to_numeric(ranked_df[main_score_col_for_tab], errors='coerce')
ranked_df['_has_main_score'] = ranked_df[main_score_col_for_tab].notna()
ranked_df['_sortable_main_score'] = ranked_df[main_score_col_for_tab].fillna(-np.inf)
sort_by_cols = ['_has_main_score', '_sortable_main_score', self.model_identifier_column]
ascending_order = [False, False, True]
ranked_df = ranked_df.sort_values(by=sort_by_cols, ascending=ascending_order, na_position='last')
ranked_df["Rank"] = pd.NA
ranked_df.loc[ranked_df['_has_main_score'], "Rank"] = range(1, ranked_df['_has_main_score'].sum() + 1)
ranked_df.drop(columns=['_has_main_score', '_sortable_main_score'], inplace=True)
self.raw_dataframes[task_key] = ranked_df
logger.info(f"Generated rankings for {task_key}.")
@staticmethod
def _format_value_as_percentage(value: Any, score_cutoff_for_percentage: float = 0.0) -> Any:
if pd.isna(value) or not isinstance(value, (int, float)): return value
if value >= score_cutoff_for_percentage and 0 <= value <= 1.0: return f"{value * 100:.2f}%"
return f"{value:.2f}" if isinstance(value, float) else value
@staticmethod
def _format_parameters_count(value: Any) -> str:
if pd.isna(value) or str(value).lower() in ["n/a", "unknown", "", "none"]: return "Unknown"
try:
num_value = float(value)
if num_value == 0: return "N/A"
if num_value >= 1_000_000_000: return f"{num_value / 1_000_000_000:.1f}B"
if num_value >= 1_000_000: return f"{num_value / 1_000_000:.1f}M"
if num_value >= 1_000: return f"{num_value / 1_000:.1f}K"
return str(int(num_value))
except ValueError: return str(value)
def _apply_general_formatting_to_cells(self, df_to_format: pd.DataFrame, task_key: str) -> pd.DataFrame:
if df_to_format.empty:
return df_to_format
formatted_df = df_to_format.copy()
is_mt_bench_tab = (str(task_key).lower() == "mt_bench")
for col_name in formatted_df.columns:
if col_name == "parameters_count":
formatted_df[col_name] = formatted_df[col_name].apply(self._format_parameters_count)
continue
if col_name == "Rank":
try:
formatted_df[col_name] = formatted_df[col_name].astype(pd.Int64Dtype())
except Exception:
pass
continue
new_col_values = []
for x_cell_value in formatted_df[col_name]:
original_value_for_cell = x_cell_value
numeric_x = x_cell_value
is_cell_numeric_type = isinstance(x_cell_value, (int, float, np.number))
if not is_cell_numeric_type:
try:
numeric_x = pd.to_numeric(x_cell_value)
is_cell_numeric_type = True
except ValueError:
is_cell_numeric_type = False
if pd.isna(numeric_x):
new_col_values.append("")
continue
formatted_cell_value = original_value_for_cell
if is_cell_numeric_type:
if is_mt_bench_tab:
if isinstance(numeric_x, float):
formatted_cell_value = f"{numeric_x:.2f}"
else:
formatted_cell_value = numeric_x
else:
if isinstance(numeric_x, (int, float)) and 0 <= numeric_x <= 1.0:
val_multiplied = numeric_x * 100
if numeric_x == 1.0 or numeric_x == 0.0:
formatted_cell_value = f"{val_multiplied:.0f}" # "100" or "0"
else:
formatted_cell_value = f"{val_multiplied:.2f}"
elif isinstance(numeric_x, float):
formatted_cell_value = f"{numeric_x:.2f}"
else:
formatted_cell_value = numeric_x
new_col_values.append(formatted_cell_value)
formatted_df[col_name] = new_col_values
return formatted_df
def _apply_markdown_and_bolding(self, df_with_general_formats: pd.DataFrame) -> pd.DataFrame:
if df_with_general_formats.empty: return df_with_general_formats
formatted_df = df_with_general_formats.copy()
model_id_col_original = self.model_identifier_column
if model_id_col_original in formatted_df.columns and 'model_url' in formatted_df.columns:
def create_markdown_link(row):
model_id_val = row[model_id_col_original]
url = row['model_url']
display_conf = self.model_display_configs.get(str(model_id_val), {})
display_name = display_conf.get('display_name', str(model_id_val))
url_for_link = display_conf.get('url', url if pd.notna(url) else 'https://google.com')
if not url_for_link or pd.isna(url_for_link): url_for_link = 'https://google.com'
return f"[{display_name}]({url_for_link})"
formatted_df[model_id_col_original] = formatted_df.apply(create_markdown_link, axis=1)
for col_name_original in self.numeric_score_columns_for_bolding:
if col_name_original in formatted_df.columns:
def to_numeric_for_max(val):
if isinstance(val, str):
try: return float(val) # Handles "88.00", "75.50", "100", "0"
except ValueError: return -np.inf
return val if pd.notna(val) else -np.inf
numeric_series_for_max = formatted_df[col_name_original].apply(to_numeric_for_max)
if not numeric_series_for_max.empty and numeric_series_for_max.notna().any() and \
pd.api.types.is_numeric_dtype(numeric_series_for_max) and not numeric_series_for_max.eq(-np.inf).all():
# Get unique scores and sort them in descending order to find the top 3
unique_sorted_scores = numeric_series_for_max.dropna().unique()
unique_sorted_scores = np.sort(unique_sorted_scores)[::-1]
max_val_numeric = unique_sorted_scores[0] if len(unique_sorted_scores) > 0 else -np.inf
second_max_numeric = unique_sorted_scores[1] if len(unique_sorted_scores) > 1 else -np.inf
third_max_numeric = unique_sorted_scores[2] if len(unique_sorted_scores) > 2 else -np.inf
if pd.notna(max_val_numeric) and max_val_numeric != -np.inf:
for i in numeric_series_for_max.index:
current_numeric_val = numeric_series_for_max.loc[i]
if pd.notna(current_numeric_val) and current_numeric_val >= -np.inf:
display_val = formatted_df.loc[i, col_name_original]
# Check for the top 3 values and apply the corresponding formatting
if current_numeric_val == max_val_numeric:
formatted_df.loc[i, col_name_original] = f"**{display_val}**"
elif current_numeric_val == second_max_numeric:
formatted_df.loc[i, col_name_original] = f"<u>{display_val}</u>"
elif pd.isna(current_numeric_val) or current_numeric_val == -np.inf:
cell_content = formatted_df.loc[i, col_name_original]
if cell_content is None or \
(isinstance(cell_content, str) and \
cell_content.strip().lower() in ["n/a", "", "unknown", "nan"]):
formatted_df.loc[i, col_name_original] = ""
return formatted_df
# def _apply_markdown_and_bolding(self, df_with_general_formats: pd.DataFrame) -> pd.DataFrame:
# if df_with_general_formats.empty: return df_with_general_formats
# formatted_df = df_with_general_formats.copy()
# model_id_col_original = self.model_identifier_column
# if model_id_col_original in formatted_df.columns and 'model_url' in formatted_df.columns:
# def create_markdown_link(row):
# model_id_val = row[model_id_col_original]
# url = row['model_url']
# display_conf = self.model_display_configs.get(str(model_id_val), {})
# display_name = display_conf.get('display_name', str(model_id_val))
# url_for_link = display_conf.get('url', url if pd.notna(url) else 'https://google.com')
# if not url_for_link or pd.isna(url_for_link): url_for_link = 'https://google.com'
# return f"[{display_name}]({url_for_link})"
# formatted_df[model_id_col_original] = formatted_df.apply(create_markdown_link, axis=1)
# for col_name_original in self.numeric_score_columns_for_bolding:
# if col_name_original in formatted_df.columns:
# def to_numeric_for_max(val):
# if isinstance(val, str):
# try: return float(val) # Handles "88.00", "75.50", "100", "0"
# except ValueError: return -np.inf
# return val if pd.notna(val) else -np.inf
# numeric_series_for_max = formatted_df[col_name_original].apply(to_numeric_for_max)
# if not numeric_series_for_max.empty and numeric_series_for_max.notna().any() and \
# pd.api.types.is_numeric_dtype(numeric_series_for_max) and not numeric_series_for_max.eq(-np.inf).all():
# # Get unique scores and sort them in descending order to find the top 3
# unique_sorted_scores = numeric_series_for_max.dropna().unique()
# unique_sorted_scores = np.sort(unique_sorted_scores)[::-1]
# max_val_numeric = unique_sorted_scores[0] if len(unique_sorted_scores) > 0 else -np.inf
# second_max_numeric = unique_sorted_scores[1] if len(unique_sorted_scores) > 1 else -np.inf
# third_max_numeric = unique_sorted_scores[2] if len(unique_sorted_scores) > 2 else -np.inf
# if pd.notna(max_val_numeric) and max_val_numeric != -np.inf:
# for i in numeric_series_for_max.index:
# current_numeric_val = numeric_series_for_max.loc[i]
# if pd.notna(current_numeric_val) and current_numeric_val >= -np.inf:
# display_val = formatted_df.loc[i, col_name_original]
# # Check for the top 3 values and apply the corresponding color
# if current_numeric_val == max_val_numeric:
# formatted_df.loc[i, col_name_original] = f"<span style='color: gold;'>{display_val}</span>"
# elif current_numeric_val == second_max_numeric:
# formatted_df.loc[i, col_name_original] = f"<span style='color: #C0C0C0;'>{display_val}</span>"
# elif current_numeric_val == third_max_numeric:
# formatted_df.loc[i, col_name_original] = f"<span style='color: #CD7F32;'>{display_val}</span>" # Bronze hex code
# elif pd.isna(current_numeric_val) or current_numeric_val == -np.inf:
# cell_content = formatted_df.loc[i, col_name_original]
# if cell_content is None or \
# (isinstance(cell_content, str) and \
# cell_content.strip().lower() in ["n/a", "", "unknown", "nan"]):
# formatted_df.loc[i, col_name_original] = ""
# return formatted_df
# def _apply_markdown_and_bolding(self, df_with_general_formats: pd.DataFrame) -> pd.DataFrame:
# if df_with_general_formats.empty: return df_with_general_formats
# formatted_df = df_with_general_formats.copy()
# model_id_col_original = self.model_identifier_column
# if model_id_col_original in formatted_df.columns and 'model_url' in formatted_df.columns:
# def create_markdown_link(row):
# model_id_val = row[model_id_col_original]
# url = row['model_url']
# display_conf = self.model_display_configs.get(str(model_id_val), {})
# display_name = display_conf.get('display_name', str(model_id_val))
# url_for_link = display_conf.get('url', url if pd.notna(url) else 'https://google.com')
# if not url_for_link or pd.isna(url_for_link): url_for_link = 'https://google.com'
# return f"[{display_name}]({url_for_link})"
# formatted_df[model_id_col_original] = formatted_df.apply(create_markdown_link, axis=1)
# for col_name_original in self.numeric_score_columns_for_bolding:
# if col_name_original in formatted_df.columns:
# def to_numeric_for_max(val):
# if isinstance(val, str):
# try: return float(val) # Handles "88.00", "75.50", "100", "0"
# except ValueError: return -np.inf
# return val if pd.notna(val) else -np.inf
# numeric_series_for_max = formatted_df[col_name_original].apply(to_numeric_for_max)
# if not numeric_series_for_max.empty and numeric_series_for_max.notna().any() and \
# pd.api.types.is_numeric_dtype(numeric_series_for_max) and not numeric_series_for_max.eq(-np.inf).all():
# max_val_numeric = numeric_series_for_max.max(skipna=True)
# if pd.notna(max_val_numeric) and max_val_numeric != -np.inf:
# for i in numeric_series_for_max.index:
# current_numeric_val = numeric_series_for_max.loc[i]
# if pd.notna(current_numeric_val) and current_numeric_val == max_val_numeric:
# display_val_to_bold = formatted_df.loc[i, col_name_original]
# if not (isinstance(display_val_to_bold, str) and display_val_to_bold.startswith("<span style='color: gold;'>") and display_val_to_bold.endswith("</span>")):
# # Changed from bolding to coloring
# formatted_df.loc[i, col_name_original] = f"<span style='color: gold;'>{display_val_to_bold}</span>"
# elif pd.isna(current_numeric_val) or current_numeric_val == -np.inf:
# cell_content = formatted_df.loc[i, col_name_original]
# if cell_content is None or \
# (isinstance(cell_content, str) and \
# cell_content.strip().lower() in ["n/a", "", "unknown", "nan"]): # Standardize NA display
# formatted_df.loc[i, col_name_original] = ""
# return formatted_df
# def _apply_markdown_and_bolding(self, df_with_general_formats: pd.DataFrame) -> pd.DataFrame:
# if df_with_general_formats.empty: return df_with_general_formats
# formatted_df = df_with_general_formats.copy()
# model_id_col_original = self.model_identifier_column
# if model_id_col_original in formatted_df.columns and 'model_url' in formatted_df.columns:
# def create_markdown_link(row):
# model_id_val = row[model_id_col_original]
# url = row['model_url']
# display_conf = self.model_display_configs.get(str(model_id_val), {})
# display_name = display_conf.get('display_name', str(model_id_val))
# url_for_link = display_conf.get('url', url if pd.notna(url) else 'https://google.com')
# if not url_for_link or pd.isna(url_for_link): url_for_link = 'https://google.com'
# return f"[{display_name}]({url_for_link})"
# formatted_df[model_id_col_original] = formatted_df.apply(create_markdown_link, axis=1)
# for col_name_original in self.numeric_score_columns_for_bolding:
# if col_name_original in formatted_df.columns:
# def to_numeric_for_max(val):
# if isinstance(val, str):
# try: return float(val) # Handles "88.00", "75.50", "100", "0"
# except ValueError: return -np.inf
# return val if pd.notna(val) else -np.inf
# numeric_series_for_max = formatted_df[col_name_original].apply(to_numeric_for_max)
# if not numeric_series_for_max.empty and numeric_series_for_max.notna().any() and \
# pd.api.types.is_numeric_dtype(numeric_series_for_max) and not numeric_series_for_max.eq(-np.inf).all():
# max_val_numeric = numeric_series_for_max.max(skipna=True)
# if pd.notna(max_val_numeric) and max_val_numeric != -np.inf:
# for i in numeric_series_for_max.index:
# current_numeric_val = numeric_series_for_max.loc[i]
# if pd.notna(current_numeric_val) and current_numeric_val == max_val_numeric:
# display_val_to_bold = formatted_df.loc[i, col_name_original]
# if not (isinstance(display_val_to_bold, str) and display_val_to_bold.startswith("**") and display_val_to_bold.endswith("**")):
# formatted_df.loc[i, col_name_original] = f"**{display_val_to_bold}**"
# elif pd.isna(current_numeric_val) or current_numeric_val == -np.inf:
# cell_content = formatted_df.loc[i, col_name_original]
# if cell_content is None or \
# (isinstance(cell_content, str) and \
# cell_content.strip().lower() in ["n/a", "", "unknown", "nan"]): # Standardize NA display
# formatted_df.loc[i, col_name_original] = ""
# return formatted_df
@staticmethod
def _get_gr_datatypes(df_with_original_cols: pd.DataFrame, model_id_col_original_name: str, score_cols_original_names: List[str]) -> List[str]:
datatypes = []
if df_with_original_cols.empty: return []
markdown_cols_original_names = {model_id_col_original_name}
markdown_cols_original_names.add("parameters_count")
markdown_cols_original_names.update(score_cols_original_names)
for col_name_original in df_with_original_cols.columns:
if col_name_original == "Rank":
datatypes.append("number")
elif col_name_original in markdown_cols_original_names:
datatypes.append("markdown")
else:
datatypes.append("str")
return datatypes
# def get_prepared_dataframe(self, task_key: str, source_filter: str = "All", name_filter_query: str = "") -> pd.DataFrame:
# original_df_for_task = self.raw_dataframes.get(task_key)
# if original_df_for_task is None or original_df_for_task.empty:
# return pd.DataFrame()
# processed_df = original_df_for_task.copy()
# parent_nlu_nlg_task_keys = ["persian_nlg", "persian_nlu"]
# if task_key in parent_nlu_nlg_task_keys:
# cols_to_drop_due_to_object = []
# for col_name in processed_df.columns:
# if processed_df[col_name].apply(lambda x: isinstance(x, dict)).any():
# cols_to_drop_due_to_object.append(col_name)
# if cols_to_drop_due_to_object:
# logger.info(f"For overview task '{task_key}', dropping object columns: {cols_to_drop_due_to_object}")
# processed_df = processed_df.drop(columns=cols_to_drop_due_to_object, errors='ignore')
# if 'source_type' in processed_df.columns and source_filter != "All":
# processed_df = processed_df[processed_df['source_type'] == source_filter]
# if processed_df.empty: return pd.DataFrame()
# if name_filter_query and self.model_identifier_column in processed_df.columns:
# try:
# processed_df = processed_df[processed_df[self.model_identifier_column].astype(str).str.contains(name_filter_query, case=False, na=False)]
# except Exception as e: logger.error(f"Name filter error: {e}")
# if processed_df.empty: return pd.DataFrame()
# if processed_df.empty: return pd.DataFrame()
# processed_df = self._apply_general_formatting_to_cells(processed_df, task_key)
# processed_df = self._apply_markdown_and_bolding(processed_df)
# if self.columns_to_hide:
# columns_to_drop_existing = [col for col in self.columns_to_hide if col in processed_df.columns]
# if columns_to_drop_existing:
# processed_df = processed_df.drop(columns=columns_to_drop_existing, errors='ignore')
# if "Rank" in processed_df.columns:
# cols_order = ["Rank"] + [col for col in processed_df.columns if col != "Rank"]
# processed_df = processed_df[cols_order]
# if "Rank" in processed_df.columns:
# processed_df["Rank"] = processed_df["Rank"].apply(lambda x: str(int(x)) if pd.notna(x) and isinstance(x, (float,int)) and x == int(x) else (str(x) if pd.notna(x) else ""))
# processed_df = processed_df.fillna("")
# return processed_df
def get_prepared_dataframe(self, task_key: str, source_filter: str = "All", name_filter_query: str = "") -> pd.DataFrame:
original_df_for_task = self.raw_dataframes.get(task_key)
if original_df_for_task is None or original_df_for_task.empty:
return pd.DataFrame()
processed_df = original_df_for_task.copy()
parent_nlu_nlg_task_keys = ["persian_nlg", "persian_nlu"]
if task_key in parent_nlu_nlg_task_keys:
cols_to_drop_due_to_object = []
for col_name in processed_df.columns:
if processed_df[col_name].apply(lambda x: isinstance(x, dict)).any():
cols_to_drop_due_to_object.append(col_name)
if cols_to_drop_due_to_object:
logger.info(f"For overview task '{task_key}', dropping object columns: {cols_to_drop_due_to_object}")
processed_df = processed_df.drop(columns=cols_to_drop_due_to_object, errors='ignore')
if 'source_type' in processed_df.columns and source_filter != "All":
processed_df = processed_df[processed_df['source_type'] == source_filter]
if processed_df.empty: return pd.DataFrame()
if name_filter_query and self.model_identifier_column in processed_df.columns:
try:
processed_df = processed_df[processed_df[self.model_identifier_column].astype(str).str.contains(name_filter_query, case=False, na=False)]
except Exception as e: logger.error(f"Name filter error: {e}")
if processed_df.empty: return pd.DataFrame()
if processed_df.empty: return pd.DataFrame()
processed_df = self._apply_general_formatting_to_cells(processed_df, task_key)
processed_df = self._apply_markdown_and_bolding(processed_df)
if self.columns_to_hide:
columns_to_drop_existing = [col for col in self.columns_to_hide if col in processed_df.columns]
if columns_to_drop_existing:
processed_df = processed_df.drop(columns=columns_to_drop_existing, errors='ignore')
# Reorder columns to ensure consistent layout
cols_order = []
if "Rank" in processed_df.columns:
cols_order.append("Rank")
model_col = self.model_identifier_column
if model_col in processed_df.columns:
cols_order.append(model_col)
thinking_col = 'thinking_method'
if thinking_col in processed_df.columns:
cols_order.append(thinking_col)
remaining_cols = [col for col in processed_df.columns if col not in cols_order]
cols_order.extend(remaining_cols)
processed_df = processed_df[cols_order]
if "Rank" in processed_df.columns:
# Define the function to replace ranks with medal emojis
def format_rank_with_medals(rank_value):
try:
rank_int = int(rank_value)
if rank_int == 1:
return "1 🥇"
elif rank_int == 2:
return "2 🥈"
elif rank_int == 3:
return "3 🥉"
else:
return str(rank_int)
except (ValueError, TypeError):
# Return original value for non-numeric or missing ranks
return str(rank_value) if pd.notna(rank_value) else ""
# Apply the new formatting function to the "Rank" column
processed_df["Rank"] = processed_df["Rank"].apply(format_rank_with_medals)
processed_df = processed_df.fillna("")
return processed_df
def make_update_fn_for_task_closure(self, task_key_for_df_data: str):
def update_table_data(name_query_str, source_filter_str):
logger.debug(f"Updating table for task_key '{task_key_for_df_data}' with name: '{name_query_str}', source: '{source_filter_str}'")
df_original_cols_formatted_values = self.get_prepared_dataframe(
task_key_for_df_data, source_filter_str, name_query_str
)
if df_original_cols_formatted_values.empty:
base_raw_df = self.raw_dataframes.get(task_key_for_df_data, pd.DataFrame())
base_raw_df_cols = list(base_raw_df.columns) if not base_raw_df.empty else []
if base_raw_df_cols:
temp_empty_df_orig_cols = pd.DataFrame(columns=base_raw_df_cols)
if self.columns_to_hide:
cols_to_drop_now = [col for col in self.columns_to_hide if col in temp_empty_df_orig_cols.columns]
if cols_to_drop_now:
temp_empty_df_orig_cols = temp_empty_df_orig_cols.drop(columns=cols_to_drop_now)
if self.main_scores_map.get(task_key_for_df_data) and "Rank" not in temp_empty_df_orig_cols.columns:
temp_empty_df_orig_cols.insert(0, "Rank", [])
renamed_empty_df = self.column_config.rename_dataframe_columns(temp_empty_df_orig_cols)
display_headers = list(renamed_empty_df.columns)
gr_datatypes = ["str"] * len(display_headers) if display_headers else ["str"]
return gr.DataFrame(value=pd.DataFrame(columns=display_headers), headers=display_headers if display_headers else ["Info"], datatype=gr_datatypes)
else:
info_message = f"No data available for {self.column_config.get_task_tab_name(task_key_for_df_data)} with current filters."
return gr.DataFrame(value=pd.DataFrame([{"Info": info_message}]), headers=["Info"], datatype=["str"])
gr_datatypes = self._get_gr_datatypes(
df_original_cols_formatted_values,
self.model_identifier_column,
self.numeric_score_columns_for_bolding
)
df_display_cols_formatted_values = self.column_config.rename_dataframe_columns(df_original_cols_formatted_values)
display_headers = list(df_display_cols_formatted_values.columns)
return gr.DataFrame(value=df_display_cols_formatted_values, headers=display_headers, datatype=gr_datatypes)
return update_table_data
def _create_and_bind_dataframe_component(self, current_task_key: str, name_search_textbox: gr.Textbox, source_filter_radio: gr.Radio):
initial_df_original_cols = self.get_prepared_dataframe(current_task_key, "All", "")
current_display_headers = []
current_datatypes = None
df_value_for_gr_display_cols = pd.DataFrame()
if initial_df_original_cols.empty:
base_df = self.raw_dataframes.get(current_task_key, pd.DataFrame())
base_df_cols_original = list(base_df.columns) if not base_df.empty else []
if base_df_cols_original:
temp_empty_df_orig_cols = pd.DataFrame(columns=base_df_cols_original)
if self.columns_to_hide:
cols_to_drop_now = [col for col in self.columns_to_hide if col in temp_empty_df_orig_cols.columns]
if cols_to_drop_now:
temp_empty_df_orig_cols = temp_empty_df_orig_cols.drop(columns=cols_to_drop_now)
if self.main_scores_map.get(current_task_key) and "Rank" not in temp_empty_df_orig_cols.columns:
temp_empty_df_orig_cols.insert(0, "Rank", [])
initial_df_display_cols = self.column_config.rename_dataframe_columns(temp_empty_df_orig_cols)
current_display_headers = list(initial_df_display_cols.columns)
current_datatypes = ["str"] * len(current_display_headers) if current_display_headers else ["str"]
df_value_for_gr_display_cols = pd.DataFrame(columns=current_display_headers)
else:
current_display_headers = ["Info"]
current_datatypes = ["str"]
df_value_for_gr_display_cols = pd.DataFrame([{"Info":f"No data or columns configured for {self.column_config.get_task_tab_name(current_task_key)}."}])
else:
current_datatypes = self._get_gr_datatypes(
initial_df_original_cols,
self.model_identifier_column,
self.numeric_score_columns_for_bolding
)
initial_df_display_cols = self.column_config.rename_dataframe_columns(initial_df_original_cols)
current_display_headers = list(initial_df_display_cols.columns)
df_value_for_gr_display_cols = initial_df_display_cols
df_component = gr.DataFrame(
value=df_value_for_gr_display_cols,
headers=current_display_headers,
datatype=current_datatypes,
interactive=False,
wrap=True,
# height=700,
# elem_id=f"dataframe_{current_task_key}"
)
update_fn = self.make_update_fn_for_task_closure(current_task_key)
filter_inputs = [name_search_textbox, source_filter_radio]
name_search_textbox.submit(fn=update_fn, inputs=filter_inputs, outputs=[df_component])
source_filter_radio.change(fn=update_fn, inputs=filter_inputs, outputs=[df_component])
return df_component
def create_gradio_interface(self) -> gr.Blocks:
logger.info("Creating Gradio interface with potentially nested tabs.")
with gr.Blocks(theme=gr.themes.Soft(), elem_id="leaderboard_main_container") as leaderboard_ui_blocks:
if not self.tab_processing_order and not self.parent_child_task_map:
gr.Markdown("### Leaderboard Not Configured\n- `tab_processing_order` and `parent_child_task_map` are not defined or empty in `leaderboard_config.yaml`.")
return leaderboard_ui_blocks
if not self.raw_dataframes or all(df.empty for df in self.raw_dataframes.values()):
gr.Markdown("### No Data Loaded\n- No data loaded from `boards_data/`. Ensure `refresh.py` ran and JSONL files exist.")
return leaderboard_ui_blocks
with gr.Row():
name_search_textbox = gr.Textbox(label="Search by Model Name", placeholder="Type model name and press Enter...", interactive=True, scale=3)
source_filter_radio = gr.Radio(choices=["All", "Open-Source", "Closed-Source"], value="All", label="Filter by Model Source", interactive=True, scale=1)
with gr.Tabs(elem_id="main_benchmark_tabs") as main_tabs:
processed_top_level_keys = set()
for main_task_key in self.tab_processing_order:
if main_task_key in processed_top_level_keys: continue
processed_top_level_keys.add(main_task_key)
main_tab_display_label = self.column_config.get_task_tab_name(main_task_key)
with gr.TabItem(label=main_tab_display_label, id=f"main_tab_{main_task_key}"):
gr.Markdown(f"## {main_tab_display_label}")
child_task_keys_for_parent = self.parent_child_task_map.get(main_task_key, [])
if child_task_keys_for_parent:
with gr.Tabs(elem_id=f"sub_tabs_for_{main_task_key}") as sub_tabs_component:
for child_key in child_task_keys_for_parent:
if child_key not in self.raw_dataframes or self.raw_dataframes[child_key].empty: # Check if df is empty
logger.warning(f"Data for sub-task '{child_key}' under parent '{main_task_key}' not loaded or is empty. Skipping sub-tab.")
child_tab_display_label_empty = self.column_config.get_task_tab_name(child_key)
with gr.TabItem(label=child_tab_display_label_empty, id=f"sub_tab_{child_key}_empty"):
gr.Markdown(f"Data for {child_tab_display_label_empty} is not available.")
continue
processed_top_level_keys.add(child_key)
child_tab_display_label = self.column_config.get_task_tab_name(child_key)
with gr.TabItem(label=child_tab_display_label, id=f"sub_tab_{child_key}"):
self._create_and_bind_dataframe_component(child_key, name_search_textbox, source_filter_radio)
else: # This main_task_key is a STANDALONE tab
if main_task_key not in self.raw_dataframes or self.raw_dataframes[main_task_key].empty: # Check if df is empty
logger.warning(f"Data for standalone task '{main_task_key}' not loaded or is empty. Skipping tab content.")
gr.Markdown(f"Data for {main_tab_display_label} is not available.")
continue
self._create_and_bind_dataframe_component(main_task_key, name_search_textbox, source_filter_radio)
return leaderboard_ui_blocks
def run_standalone(self) -> None:
logger.info("Running LeaderboardApp in standalone mode.")
try:
self.load_data()
if not self.raw_dataframes or all(df.empty for df in self.raw_dataframes.values()):
logger.warning("No data loaded. Leaderboard might be empty or show 'No data' messages.")
self.generate_model_rankings()
demo_interface = self.create_gradio_interface()
demo_interface.launch(server_name="0.0.0.0", server_port=7860, debug=True)
except Exception as e:
logger.error(f"Error during standalone run: {e}", exc_info=True)
try:
with gr.Blocks() as error_demo: gr.Error(f"Failed to launch LeaderboardApp: {e}")
error_demo.launch(server_name="0.0.0.0", server_port=7860)
except Exception as launch_err:
logger.error(f"CRITICAL: Failed even to launch the error Gradio page: {launch_err}")
def main():
logger.info(f"Initializing LeaderboardApp with config: {CONFIG_FILE_PATH}")
if not CONFIG_FILE_PATH.exists():
logger.critical(f"CRITICAL: Config file '{CONFIG_FILE_PATH.name}' not found at {CONFIG_FILE_PATH}. App cannot start.")
try:
with gr.Blocks() as error_demo: gr.Error(f"Config File Not Found: {CONFIG_FILE_PATH}")
error_demo.launch(server_name="0.0.0.0", server_port=7860)
except Exception as launch_err:
logger.error(f"CRITICAL: Failed to launch the error Gradio page for missing config: {launch_err}")
return
app = LeaderboardApp(config_path=CONFIG_FILE_PATH)
app.run_standalone()
if __name__ == '__main__':
main() |