File size: 21,184 Bytes
0317fe9
 
 
 
 
 
 
 
 
 
 
a089b7d
0317fe9
 
 
 
 
 
 
 
 
 
 
 
 
1226d21
 
0317fe9
 
 
1226d21
 
 
 
 
 
0317fe9
1226d21
 
 
 
 
 
 
0317fe9
1226d21
 
 
 
0317fe9
 
 
 
 
1226d21
 
 
 
 
 
0317fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61894ce
 
 
 
 
 
 
 
 
0317fe9
 
 
 
 
 
 
 
61894ce
0317fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61894ce
 
 
 
 
 
0317fe9
61894ce
 
 
 
 
0317fe9
 
 
 
 
 
 
 
 
 
 
 
61894ce
 
0317fe9
61894ce
 
0317fe9
61894ce
 
 
0317fe9
 
 
 
 
61894ce
 
 
0317fe9
61894ce
 
0317fe9
61894ce
 
0317fe9
 
 
273503f
317a2b6
 
 
 
 
 
 
d931f3e
 
 
 
 
0317fe9
61894ce
509379a
0317fe9
 
 
 
509379a
61894ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0317fe9
 
 
 
 
 
 
 
 
 
 
 
 
42ba589
090226f
42ba589
ee7addd
42ba589
06cdd19
42ba589
273503f
 
 
 
 
f7a3f90
317a2b6
 
 
 
d931f3e
 
 
317a2b6
 
 
 
 
 
 
f7a3f90
 
61894ce
067fc9d
42ba589
317a2b6
 
 
 
 
 
067fc9d
42ba589
317a2b6
 
 
 
 
 
 
067fc9d
0bec3a0
6823f82
61894ce
509379a
 
ee02ee6
a089b7d
ee02ee6
a089b7d
 
 
ee02ee6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
asr_english_datasets = [
    'LibriSpeech-Clean', 
    'LibriSpeech-Other', 
    'CommonVoice-15-EN', 
    'Peoples-Speech', 
    'GigaSpeech-1', 
    'Earnings-21', 
    'Earnings-22', 
    'TED-LIUM-3', 
    'TED-LIUM-3-LongForm', 
]


asr_singlish_datasets = [
    'MNSC-PART1-ASR', 
    'MNSC-PART2-ASR',
    'MNSC-PART3-ASR',
    'MNSC-PART4-ASR',
    'MNSC-PART5-ASR',
    'MNSC-PART6-ASR',
]


asr_mandarin_datasets = [
    'AISHELL-ASR-ZH', 
    'CommonVoice-ZH',
    'YouTube ASR: Chinese with English Prompt',
]


asr_malay_datasets = [
    'YouTube ASR: Malay with English Prompt'
]


asr_tamil_datasets = [
    'CommonVoice-17-Tamil',
    'Fleurs-Tamil',
    'YouTube ASR: Tamil with English Prompt'
]


asr_indonesian_datasets = [
    'CommonVoice-17-Indonesian', 
    'GigaSpeech-2-Indonesain',
]


asr_thai_datasets = [
    'GigaSpeech-2-Thai',
    'Lotus-Thai'
]


asr_vietnamese_datasets = [
    'CommonVoice-17-Vietnamese',
    'GigaSpeech-2-Vietnamese'
]


asr_private_datasets =  [
    'CNA',
    'IDPC',
    'Parliament',
    'UKUS-News',
    'Mediacorp',
    'IDPC-Short',
    'Parliament-Short',
    'UKUS-News-Short',
    'Mediacorp-Short',
    'YouTube ASR: English Singapore Content',
    'YouTube ASR: English with Strong Emotion',
]


speech_translation_datasets = [
    'CoVoST2-EN-ID', 
    'CoVoST2-EN-ZH',
    'CoVoST2-EN-TA', 
    'CoVoST2-ID-EN', 
    'CoVoST2-ZH-EN', 
    'CoVoST2-TA-EN'
]


speech_qa_english_datasets = [
    'CN-College-Listen-MCQ',
    'DREAM-TTS-MCQ',
    'SLUE-P2-SQA5', 
    'Public-SG-Speech-QA', 
    'Spoken-SQuAD',
    'MMAU-mini'
]


speech_qa_singlish_datasets = [
    'MNSC-PART3-SQA', 
    'MNSC-PART4-SQA',
    'MNSC-PART5-SQA',
    'MNSC-PART6-SQA',
]


sds_datasets = [
    'MNSC-PART3-SDS', 
    'MNSC-PART4-SDS',
    'MNSC-PART5-SDS',
    'MNSC-PART6-SDS',
]


si_datasets = [
    'OpenHermes-Audio', 
    'ALPACA-Audio',
]


ac_datasets = [
    'WavCaps', 
    'AudioCaps',
]


asqa_datasets = [
    'Clotho-AQA', 
    'WavCaps-QA', 
    'AudioCaps-QA'
]


er_datasets = [
    'IEMOCAP-Emotion', 
    'MELD-Sentiment', 
    'MELD-Emotion',
]


ar_datasets = [
    'VoxCeleb-Accent',
    'MNSC-AR-Sentence',
    'MNSC-AR-Dialogue',
]


gr_datasets = [
    'VoxCeleb-Gender', 
    'IEMOCAP-Gender'
]


music_datasets = ['MuChoMusic']


wer_development_datasets = [
    'YouTube ASR: Malay with Malay Prompt',
    'YouTube ASR: Chinese with Chinese Prompt',
    'SEAME-Dev-Mandarin',
    'SEAME-Dev-Singlish',
]


non_wer_development_datasets = [
    'YouTube SQA: English with Singapore Content',
    'YouTube SDS: English with Singapore Content',
    'YouTube PQA: English with Singapore Content',
]


wer_displayname2datasetname = {
    'LibriSpeech-Clean'    : 'librispeech_test_clean',
    'LibriSpeech-Other'    : 'librispeech_test_other',
    'CommonVoice-15-EN'    : 'common_voice_15_en_test',
    'Peoples-Speech'       : 'peoples_speech_test',
    'GigaSpeech-1'         : 'gigaspeech_test',
    'Earnings-21'          : 'earnings21_test',
    'Earnings-22'          : 'earnings22_test',
    'TED-LIUM-3'           : 'tedlium3_test',
    'TED-LIUM-3-LongForm'  : 'tedlium3_long_form_test',

    'MNSC-PART1-ASR'       : 'imda_part1_asr_test',
    'MNSC-PART2-ASR'       : 'imda_part2_asr_test',
    'MNSC-PART3-ASR'       : 'imda_part3_30s_asr_test',
    'MNSC-PART4-ASR'       : 'imda_part4_30s_asr_test',
    'MNSC-PART5-ASR'       : 'imda_part5_30s_asr_test',
    'MNSC-PART6-ASR'       : 'imda_part6_30s_asr_test',

    'AISHELL-ASR-ZH'       : 'aishell_asr_zh_test',
    'CommonVoice-ZH'       : 'commonvoice_zh_asr',

    'CommonVoice-17-Indonesian'    : 'commonvoice_17_id_asr',
    'CommonVoice-17-Tamil'         : 'commonvoice_17_ta_asr',
    'CommonVoice-17-Thai'          : 'commonvoice_17_th_asr',
    'CommonVoice-17-Vietnamese'    : 'commonvoice_17_vi_asr',
    'GigaSpeech-2-Indonesain'      : 'gigaspeech2_id_test',
    'GigaSpeech-2-Thai'            : 'gigaspeech2_th_test',
    'GigaSpeech-2-Vietnamese'      : 'gigaspeech2_vi_test',
    'Fleurs-Tamil'                 : 'fleurs_tamil_ta_30_asr',
    'Lotus-Thai'                   : 'lotus_thai_th_30_asr',

    'CNA'             : 'cna_test',
    'IDPC'            : 'idpc_test',
    'Parliament'      : 'parliament_test',
    'UKUS-News'       : 'ukusnews_test',
    'Mediacorp'       : 'mediacorp_test',
    'IDPC-Short'      : 'idpc_short_test',
    'Parliament-Short': 'parliament_short_test',
    'UKUS-News-Short' : 'ukusnews_short_test',
    'Mediacorp-Short' : 'mediacorp_short_test',
    
    'YouTube ASR: English Singapore Content': 'ytb_asr_batch1',
    'YouTube ASR: English with Strong Emotion': 'ytb_asr_batch2',
    'YouTube ASR: Malay with English Prompt': 'ytb_asr_batch3_malay',
    'YouTube ASR: Chinese with English Prompt': 'ytb_asr_batch3_chinese',
    'YouTube ASR: Tamil with English Prompt': 'ytb_asr_batch3_tamil',

    'YouTube ASR: Malay with Malay Prompt': 'ytb_asr_batch3_ms_ms_prompt',
    'YouTube ASR: Chinese with Chinese Prompt': 'ytb_asr_batch3_zh_zh_prompt',
    
    'SEAME-Dev-Mandarin'   : 'seame_dev_man',
    'SEAME-Dev-Singlish'   : 'seame_dev_sge',
}


non_wer_displayname2datasetname = {
    'CoVoST2-EN-ID'        : 'covost2_en_id_test',
    'CoVoST2-EN-ZH'        : 'covost2_en_zh_test',
    'CoVoST2-EN-TA'        : 'covost2_en_ta_test',
    'CoVoST2-ID-EN'        : 'covost2_id_en_test',
    'CoVoST2-ZH-EN'        : 'covost2_zh_en_test',
    'CoVoST2-TA-EN'        : 'covost2_ta_en_test',

    'CN-College-Listen-MCQ': 'cn_college_listen_mcq_test',
    'DREAM-TTS-MCQ'        : 'dream_tts_mcq_test',
    'SLUE-P2-SQA5'         : 'slue_p2_sqa5_test',
    'Public-SG-Speech-QA'  : 'public_sg_speech_qa_test',
    'Spoken-SQuAD'         : 'spoken_squad_test',
    'MMAU-mini'            : 'mmau_mini',

    'MNSC-PART3-SQA'       : 'imda_part3_30s_sqa_human_test',
    'MNSC-PART4-SQA'       : 'imda_part4_30s_sqa_human_test',
    'MNSC-PART5-SQA'       : 'imda_part5_30s_sqa_human_test',
    'MNSC-PART6-SQA'       : 'imda_part6_30s_sqa_human_test',

    'MNSC-PART3-SDS'       : 'imda_part3_30s_ds_human_test',
    'MNSC-PART4-SDS'       : 'imda_part4_30s_ds_human_test',
    'MNSC-PART5-SDS'       : 'imda_part5_30s_ds_human_test',
    'MNSC-PART6-SDS'       : 'imda_part6_30s_ds_human_test',

    'OpenHermes-Audio'     : 'openhermes_audio_test',
    'ALPACA-Audio'         : 'alpaca_audio_test',

    'WavCaps'              : 'wavcaps_test',
    'AudioCaps'            : 'audiocaps_test',

    'Clotho-AQA'           : 'clotho_aqa_test',
    'WavCaps-QA'           : 'wavcaps_qa_test',
    'AudioCaps-QA'         : 'audiocaps_qa_test',

    'IEMOCAP-Emotion'      : 'iemocap_emotion_test',
    'MELD-Sentiment'       : 'meld_sentiment_test',
    'MELD-Emotion'         : 'meld_emotion_test',

    'VoxCeleb-Accent'      : 'voxceleb_accent_test',
    'MNSC-AR-Sentence'     : 'imda_ar_sentence',
    'MNSC-AR-Dialogue'     : 'imda_ar_dialogue',

    'VoxCeleb-Gender'      : 'voxceleb_gender_test',
    'IEMOCAP-Gender'       : 'iemocap_gender_test',

    'MuChoMusic'           : 'muchomusic_test',

    'YouTube SQA: English with Singapore Content': 'ytb_sqa_batch1',
    'YouTube SDS: English with Singapore Content': 'ytb_sds_batch1',
    'YouTube PQA: English with Singapore Content': 'ytb_pqa_batch1',
    
    'YouTube SQA: Malay': 'ytb_sqa_batch3_malay',
    'YouTube SQA: Chinese': 'ytb_sqa_batch3_chinese',
    'YouTube SQA: Tamil': 'ytb_sqa_batch3_tamil',
    
    'YouTube SDS: Malay': 'ytb_sds_batch3_malay',
    'YouTube SDS: Chinese': 'ytb_sds_batch3_chinese',
    'YouTube SDS: Tamil': 'ytb_sds_batch3_tamil',
    
    'YouTube-TA-En':'ytb_asr_batch3_ta_en',
    'YouTube-ZH-En':'ytb_asr_batch3_zh_en',
    'YouTube-MA-En':'ytb_asr_batch3_ma_en',
    
}


displayname2datasetname = {}
displayname2datasetname.update(wer_displayname2datasetname)
displayname2datasetname.update(non_wer_displayname2datasetname)


datasetname2diaplayname = {datasetname: displayname for displayname, datasetname in displayname2datasetname.items()}


dataset_diaplay_information = {
    'LibriSpeech-Clean'    : 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.',
    'LibriSpeech-Other'    : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.',
    'CommonVoice-15-EN'    : 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.',
    'Peoples-Speech'       : 'A large-scale, open-source speech recognition dataset, with diverse accents and domains.',
    'GigaSpeech-1'         : 'A large-scale ASR dataset with diverse audio sources like podcasts, interviews, etc.',
    'Earnings-21'          : 'ASR test dataset focused on earnings calls from 2021, with professional speech and financial jargon.',
    'Earnings-22'          : 'Similar to Earnings21, but covering earnings calls from 2022.',
    'TED-LIUM-3'           : 'A test set derived from TED talks, covering diverse speakers and topics.',
    'TED-LIUM-3-LongForm'  : 'A longer version of the TED-LIUM dataset, containing extended audio samples. This poses challenges to existing fusion methods in handling long audios. However, it provides benchmark for future development.',
    'AISHELL-ASR-ZH'       : 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.',
    'CoVoST2-EN-ID'        : 'CoVoST 2 dataset for speech translation from English to Indonesian.',
    'CoVoST2-EN-ZH'        : 'CoVoST 2 dataset for speech translation from English to Chinese.',
    'CoVoST2-EN-TA'        : 'CoVoST 2 dataset for speech translation from English to Tamil.',
    'CoVoST2-ID-EN'        : 'CoVoST 2 dataset for speech translation from Indonesian to English.',
    'CoVoST2-ZH-EN'        : 'CoVoST 2 dataset for speech translation from Chinese to English.',
    'CoVoST2-TA-EN'        : 'CoVoST 2 dataset for speech translation from Tamil to English.',
    'CN-College-Listen-MCQ': 'Chinese College English Listening Test, with multiple-choice questions.',
    'DREAM-TTS-MCQ'        : 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
    'SLUE-P2-SQA5'         : 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
    'Public-SG-Speech-QA'  : 'Public dataset for speech-based question answering, gathered from Singapore.',
    'Spoken-SQuAD'         : 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.',
    'OpenHermes-Audio'     : 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.',
    'ALPACA-Audio'         : 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.',
    'WavCaps'              : 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
    'AudioCaps'            : 'AudioCaps dataset, used for generating captions from general audio events.',
    'Clotho-AQA'           : 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
    'WavCaps-QA'           : 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
    'AudioCaps-QA'         : 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.',
    'VoxCeleb-Accent'      : 'Test dataset for accent recognition, based on VoxCeleb, a large speaker identification dataset.',
    'MNSC-AR-Sentence'     : 'Accent recognition based on the IMDA NSC dataset, focusing on sentence-level accents.',
    'MNSC-AR-Dialogue'     : 'Accent recognition based on the IMDA NSC dataset, focusing on dialogue-level accents.',

    'VoxCeleb-Gender': 'Test dataset for gender classification, also derived from VoxCeleb.',
    'IEMOCAP-Gender' : 'Gender classification based on the IEMOCAP dataset.',
    'IEMOCAP-Emotion': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
    'MELD-Sentiment' : 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
    'MELD-Emotion'   : 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.',
    'MuChoMusic'     : 'Test dataset for music understanding, from paper: MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models.',
    'MNSC-PART1-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 1.',
    'MNSC-PART2-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 2.',
    'MNSC-PART3-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 3.',
    'MNSC-PART4-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 4.',
    'MNSC-PART5-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 5.',
    'MNSC-PART6-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 6.',
    'MNSC-PART3-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 3.',
    'MNSC-PART4-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 4.',
    'MNSC-PART5-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 5.',
    'MNSC-PART6-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 6.',
    'MNSC-PART3-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 3.',
    'MNSC-PART4-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 4.',
    'MNSC-PART5-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 5.',
    'MNSC-PART6-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 6.',

    'CNA'             : 'Under Development',
    'IDPC'            : 'Under Development',
    'Parliament'      : 'Under Development',
    'UKUS-News'       : 'Under Development',
    'Mediacorp'       : 'Under Development',
    'IDPC-Short'      : 'Under Development',
    'Parliament-Short': 'Under Development',
    'UKUS-News-Short' : 'Under Development',
    'Mediacorp-Short' : 'Under Development',

    'CommonVoice-ZH'               : 'Under Development',
    'CommonVoice-17-Indonesian'    : 'Under Development',
    'CommonVoice-17-Tamil'         : 'Under Development',
    'CommonVoice-17-Thai'          : 'Under Development',
    'CommonVoice-17-Vietnamese'    : 'Under Development',
    'GigaSpeech-2-Indonesain'      : 'Under Development',
    'GigaSpeech-2-Thai'            : 'Under Development',
    'GigaSpeech-2-Vietnamese'      : 'Under Development',
    'Fleurs-Tamil'                 : 'Under Development',
    'Lotus-Thai'                   : 'Under Development',
    'MMAU-mini'                    : 'Under Development',

    
    'YouTube ASR: English Singapore Content'  : 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains English and Singlish audio clips, featuring Singapore-related content. <br> It includes approximately 2.5 hours of audio, with individual clips ranging from 2 seconds to 30 seconds in length.',
    
    'YouTube ASR: English with Strong Emotion'  : 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains English, Singlish and some unknown languages audio clips, featuring speech with strong emotional expression. <br> It includes approximately 3.9 hours of audio, with each clip lasting 30 seconds.',
    
    'YouTube ASR: Malay with English Prompt': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset mainly contains Malay and some Malay-English codeswitch audio clips, featuring with English prompts. <br> It includes approximately 2.55 hours of audio, with indicidual clips ranging form 30 seconds to 95 seconds in length.',
    
    'YouTube ASR: Malay with Malay Prompt': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset use the same audio from <i>YouTube ASR: Malay English Prompt</i>, except featuring with Malay prompts. <br> It includes approximately 2.55 hours of audio, with indicidual clips ranging form 30 seconds to 95 seconds in length.',
    
    'YouTube ASR: Chinese with English Prompt': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains Chinese and some Chinese-English codeswitch audio clips, featuring with English prompts. <br> It includes approximately 3.32 hours of audio, with individual clips ranging from 17 seconds to 1966 seconds in length.',
    
    'YouTube ASR: Chinese with Chinese Prompt': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains Chinese and some Chinese-English codeswitch audio clips, featuring with Chinese prompts. <br> It includes approximately 3.32 hours of audio, with individual clips ranging from 17 seconds to 1966 seconds in length.',
    
    'YouTube ASR: Tamil with Tamil Prompt': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains Tamil and some Tamil-English codeswitch audio clips, featuring with Tamil prompts. <br> It includes approximately 2.44 hours of audio, with individual clips ranging from 30 seconds to 324 seconds in length.',
    
    'YouTube ASR: Tamil with English Prompt': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains Tamil and some Tamil-English codeswitch audio clips, featuring with English prompts. <br> It includes approximately 2.44 hours of audio, with individual clips ranging from 30 seconds to 324 seconds in length.',
    
    'YouTube-TA-En':'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Tamil<i>',
    'YouTube-ZH-En':'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Chinese<i>',
    'YouTube-MA-En':'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Malay<i>',
    
    # 'YouTube ASR Translation: Chinese2English': 'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Chinese<i>',
    
    # 'YouTube ASR Translation: Tamil2English': 'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Tamil<i>',
    
    
    
    'SEAME-Dev-Mandarin'   : 'Under Development',
    'SEAME-Dev-Singlish'   : 'Under Development',

    'YouTube SQA: English with Singapore Content': 'YouTube Evaluation Dataset for Speech-QA Task: <br> This dataset contains English and Singlish audio clips, featuring Singapore-related content. <br> It includes approximately 7.6 hours of audio, with individual clips ranging from 8 seconds to 32 seconds in length.',
    
    'YouTube SQA: Malay': 'YouTube Evaluation Dataset for Speech-QA Task: <br> The auido of this dataset is same as <i>YouTube ASR: Malay<i>, it contains Malay and some Malay-English codeswitch audio clips, featuring with English prompts. <br> It includes approximately 2.55 hours of audio, with indicidual clips ranging form 30 seconds to 95 seconds in length.',
    
    'YouTube SQA: Chinese': 'YouTube Evaluation Dataset for Speech-QA Task: <br> The auido of this dataset is same as <i>YouTube ASR: Chinese<i>',
    
    'YouTube SQA: Tamil': 'YouTube Evaluation Dataset for Speech-QA Task: <br> The auido of this dataset is same as <i>YouTube ASR: Tamil<i>',
    
    'YouTube SDS: English with Singapore Content': 'YouTube Evaluation Dataset for Summary Task: <br> This dataset contains English and Singlish audio clips, featuring Singapore-related content. <br> It includes approximately 5.4 hours of audio, with individual clips ranging from 8 seconds to 32 seconds in length.',
    
    'YouTube SDS: Malay': 'YouTube Evaluation Dataset for Speech-QA Task: <br> The auido of this dataset is same as <i>YouTube ASR: Malay<i>, it contains Malay and some Malay-English codeswitch audio clips, featuring with English prompts. <br> It includes approximately 2.55 hours of audio, with indicidual clips ranging form 30 seconds to 95 seconds in length.',
    
    'YouTube SDS: Chinese': 'YouTube Evaluation Dataset for Speech-QA Task: <br> The auido of this dataset is same as <i>YouTube ASR: Chinese<i>',
    
    'YouTube SDS: Tamil': 'YouTube Evaluation Dataset for Speech-QA Task: <br> The auido of this dataset is same as <i>YouTube ASR: Tamil<i>',
    
    
    'YouTube PQA: English with Singapore Content': 'YouTube Evaluation Dataset for Paralinguistics QA Task: <br> This dataset contains English and Singlish audio clips, featuring Singapore-related content. <br> It includes approximately 41.4 hours of audio, with individual clips ranging from 41 seconds to 83 seconds in length.',
    
    
                }


metrics_info = {
    'wer'                    : 'Word Error Rate (WER) - The Lower, the better.',
    'llama3_70b_judge_binary': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
    'llama3_70b_judge'       : 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
    'meteor'                 : 'METEOR Score. The higher, the better.',
    'bleu'                   : 'BLEU Score. The higher, the better.',
}