File size: 33,306 Bytes
1c64423 677409b 56577be eea64ae 5732ca4 1c64423 677409b 5732ca4 677409b 1c64423 e71283a 677409b e71283a 1c64423 cb8319c 1c64423 af6ffde 66a8429 cb8319c 610a42c 66a8429 cb8319c 5732ca4 56577be 5732ca4 0f53af1 1c64423 cb8319c 66a8429 cb8319c 35909d0 66a8429 56577be 66a8429 56577be 66a8429 56577be cb8319c 56577be 66a8429 93263b6 66a8429 56577be 66a8429 56577be 35909d0 66a8429 35909d0 66a8429 35909d0 1c64423 56577be 5732ca4 56577be 41b20a8 56577be 41b20a8 5732ca4 41b20a8 66a8429 41b20a8 66a8429 41b20a8 1c64423 56577be 1c64423 56577be 35909d0 1c64423 56577be 5732ca4 56577be 66a8429 56577be 677409b 41b20a8 677409b 66a8429 1c64423 56577be cb8319c 56577be 41b20a8 56577be 5133562 56577be dd809a6 35909d0 dd809a6 56577be 41b20a8 56577be 41b20a8 5133562 56577be 41b20a8 dd809a6 41b20a8 56577be cb8319c 56577be 1c64423 cb8319c 1c64423 cb8319c e1bddaa cb8319c e1bddaa cb8319c 1c64423 cb8319c e1bddaa cb8319c 1c64423 e1bddaa 1c64423 677409b 1c64423 56577be 1c64423 677409b 1c64423 e1bddaa 1c64423 677409b 1c64423 677409b 1c64423 56577be 677409b 1c64423 e1bddaa 56577be 1c64423 677409b 1c64423 677409b 1c64423 cb8319c e1bddaa 1c64423 677409b 1c64423 56577be cb8319c 1c64423 677409b 1c64423 cb8319c 41b20a8 dd809a6 41b20a8 56577be 677409b 1c64423 cb8319c 56577be e71283a 56577be 66a8429 56577be 41b20a8 56577be 41b20a8 e1bddaa 66a8429 e1bddaa 41b20a8 66a8429 e1bddaa cb8319c e1bddaa 41b20a8 e1bddaa 41b20a8 e1bddaa 41b20a8 cb8319c 41b20a8 cb8319c 41b20a8 dd809a6 41b20a8 e1bddaa 41b20a8 e1bddaa cb8319c 41b20a8 66a8429 41b20a8 66a8429 41b20a8 cb8319c 41b20a8 cb8319c 41b20a8 dd809a6 41b20a8 cb8319c 41b20a8 1c64423 56577be 1c64423 56577be 1c64423 41b20a8 56577be 5133562 1c64423 e1bddaa 1c64423 cb8319c 1c64423 677409b 56577be 1c64423 56577be 1c64423 b686601 1c64423 56577be 41b20a8 1c64423 56577be 1c64423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
import os
import re
import json
from typing import List, Generator, Optional
from openai import OpenAI
from pydoc import html
from tenacity import retry, stop_after_attempt, wait_exponential
import logging
from cachetools import TTLCache
import hashlib
import requests
import pydub
import io
import torchaudio
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, AutoProcessor
from parler_tts import ParlerTTSForConditionalGeneration
from utils.web_search import web_search
logger = logging.getLogger(__name__)
# إعداد Cache
cache = TTLCache(maxsize=int(os.getenv("QUEUE_SIZE", 100)), ttl=600)
# تعريف LATEX_DELIMS
LATEX_DELIMS = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
{"left": "\\[", "right": "\\]", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
]
# إعداد العميل لـ Hugging Face API
HF_TOKEN = os.getenv("HF_TOKEN")
BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://api-inference.huggingface.co/v1")
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co/v1")
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-120b")
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "mistralai/Mixtral-8x7B-Instruct-v0.1")
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "meta-llama/Llama-3-8b-chat-hf") # استبدال Qwen بنموذج متاح
CLIP_BASE_MODEL = os.getenv("CLIP_BASE_MODEL", "Salesforce/blip-image-captioning-large")
CLIP_LARGE_MODEL = os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14")
ASR_MODEL = os.getenv("ASR_MODEL", "openai/whisper-large-v3")
TTS_MODEL = os.getenv("TTS_MODEL", "facebook/mms-tts-ara")
# تعطيل PROVIDER_ENDPOINTS لأننا بنستخدم Hugging Face فقط
PROVIDER_ENDPOINTS = {
"huggingface": API_ENDPOINT # استخدام Hugging Face فقط
}
def check_model_availability(model_name: str, api_key: str) -> tuple[bool, str, str]:
try:
response = requests.get(
f"{ROUTER_API_URL}/v1/models/{model_name}",
headers={"Authorization": f"Bearer {api_key}"},
timeout=30
)
if response.status_code == 200:
logger.info(f"Model {model_name} is available at {API_ENDPOINT}")
return True, api_key, API_ENDPOINT
elif response.status_code == 429 and BACKUP_HF_TOKEN and api_key != BACKUP_HF_TOKEN:
logger.warning(f"Rate limit reached for token {api_key}. Switching to backup token.")
return check_model_availability(model_name, BACKUP_HF_TOKEN)
logger.error(f"Model {model_name} not available: {response.status_code} - {response.text}")
return False, api_key, API_ENDPOINT
except Exception as e:
logger.error(f"Failed to check model availability for {model_name}: {e}")
if BACKUP_HF_TOKEN and api_key != BACKUP_HF_TOKEN:
logger.warning(f"Retrying with backup token for {model_name}")
return check_model_availability(model_name, BACKUP_HF_TOKEN)
return False, api_key, API_ENDPOINT
def select_model(query: str, input_type: str = "text", preferred_model: Optional[str] = None) -> tuple[str, str]:
if preferred_model and preferred_model in MODEL_ALIASES:
model_name = MODEL_ALIASES[preferred_model]
is_available, _, endpoint = check_model_availability(model_name, HF_TOKEN)
if is_available:
logger.info(f"Selected preferred model {model_name} with endpoint {endpoint} for query: {query}")
return model_name, endpoint
query_lower = query.lower()
if input_type == "audio" or any(keyword in query_lower for keyword in ["voice", "audio", "speech", "صوت", "تحويل صوت"]):
logger.info(f"Selected {ASR_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for audio input")
return ASR_MODEL, FALLBACK_API_ENDPOINT
if any(keyword in query_lower for keyword in ["text-to-speech", "tts", "تحويل نص إلى صوت"]) or input_type == "tts":
logger.info(f"Selected {TTS_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for text-to-speech")
return TTS_MODEL, FALLBACK_API_ENDPOINT
image_patterns = [
r"\bimage\b", r"\bpicture\b", r"\bphoto\b", r"\bvisual\b", r"\bصورة\b", r"\bتحليل\s+صورة\b",
r"\bimage\s+analysis\b", r"\bimage\s+classification\b", r"\bimage\s+description\b"
]
for pattern in image_patterns:
if re.search(pattern, query_lower, re.IGNORECASE):
logger.info(f"Selected {CLIP_BASE_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for image-related query: {query}")
return CLIP_BASE_MODEL, FALLBACK_API_ENDPOINT
available_models = [
(MODEL_NAME, API_ENDPOINT),
(SECONDARY_MODEL_NAME, FALLBACK_API_ENDPOINT),
(TERTIARY_MODEL_NAME, API_ENDPOINT)
]
for model_name, api_endpoint in available_models:
is_available, _, endpoint = check_model_availability(model_name, HF_TOKEN)
if is_available:
logger.info(f"Selected {model_name} with endpoint {endpoint} for query: {query}")
return model_name, endpoint
logger.error("No models available. Falling back to default.")
return MODEL_NAME, API_ENDPOINT
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=2, min=4, max=60))
def request_generation(
api_key: str,
api_base: str,
message: str,
system_prompt: str,
model_name: str,
chat_history: Optional[List[dict]] = None,
temperature: float = 0.7,
max_new_tokens: int = 2048,
reasoning_effort: str = "off",
tools: Optional[List[dict]] = None,
tool_choice: Optional[str] = None,
deep_search: bool = False,
input_type: str = "text",
audio_data: Optional[bytes] = None,
image_data: Optional[bytes] = None,
output_format: str = "text"
) -> Generator[bytes | str, None, None]:
is_available, selected_api_key, selected_endpoint = check_model_availability(model_name, api_key)
if not is_available:
yield f"Error: Model {model_name} is not available. Please check the model endpoint or token."
return
cache_key = hashlib.md5(json.dumps({
"message": message,
"system_prompt": system_prompt,
"model_name": model_name,
"chat_history": chat_history,
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"output_format": output_format
}, sort_keys=True).encode()).hexdigest()
if cache_key in cache:
logger.info(f"Cache hit for query: {message[:50]}...")
for chunk in cache[cache_key]:
yield chunk
return
client = OpenAI(api_key=selected_api_key, base_url=selected_endpoint, timeout=120.0)
task_type = "general"
enhanced_system_prompt = system_prompt
buffer = "" # تعريف buffer هنا لتجنب UnboundLocalError
if model_name == ASR_MODEL and audio_data:
task_type = "audio_transcription"
try:
audio_file = io.BytesIO(audio_data)
audio = pydub.AudioSegment.from_file(audio_file)
audio = audio.set_channels(1).set_frame_rate(16000)
audio_file = io.BytesIO()
audio.export(audio_file, format="wav")
audio_file.name = "audio.wav"
transcription = client.audio.transcriptions.create(
model=model_name,
file=audio_file,
response_format="text"
)
yield transcription
cache[cache_key] = [transcription]
return
except Exception as e:
logger.error(f"Audio transcription failed: {e}")
yield f"Error: Audio transcription failed: {e}"
return
if model_name == TTS_MODEL or output_format == "audio":
task_type = "text_to_speech"
try:
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
processor = AutoProcessor.from_pretrained(TTS_MODEL)
inputs = processor(text=message, return_tensors="pt")
audio = model.generate(**inputs)
audio_file = io.BytesIO()
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
audio_file.seek(0)
audio_data = audio_file.read()
yield audio_data
cache[cache_key] = [audio_data]
return
except Exception as e:
logger.error(f"Text-to-speech failed: {e}")
yield f"Error: Text-to-speech failed: {e}"
return
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL] and image_data:
task_type = "image_analysis"
try:
model = CLIPModel.from_pretrained(model_name)
processor = CLIPProcessor.from_pretrained(model_name)
image = Image.open(io.BytesIO(image_data)).convert("RGB")
inputs = processor(text=message, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
result = f"Image analysis result: {probs.tolist()}"
if output_format == "audio":
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
processor = AutoProcessor.from_pretrained(TTS_MODEL)
inputs = processor(text=result, return_tensors="pt")
audio = model.generate(**inputs)
audio_file = io.BytesIO()
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
audio_file.seek(0)
audio_data = audio_file.read()
yield audio_data
else:
yield result
cache[cache_key] = [result]
return
except Exception as e:
logger.error(f"Image analysis failed: {e}")
yield f"Error: Image analysis failed: {e}"
return
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL]:
task_type = "image"
enhanced_system_prompt = f"{system_prompt}\nYou are an expert in image analysis and description. Provide detailed descriptions, classifications, or analysis of images based on the query."
elif any(keyword in message.lower() for keyword in ["code", "programming", "python", "javascript", "react", "django", "flask"]):
task_type = "code"
enhanced_system_prompt = f"{system_prompt}\nYou are an expert programmer. Provide accurate, well-commented code with comprehensive examples and detailed explanations."
elif any(keyword in message.lower() for keyword in ["analyze", "analysis", "تحليل"]):
task_type = "analysis"
enhanced_system_prompt = f"{system_prompt}\nProvide detailed analysis with step-by-step reasoning, examples, and data-driven insights."
elif any(keyword in message.lower() for keyword in ["review", "مراجعة"]):
task_type = "review"
enhanced_system_prompt = f"{system_prompt}\nReview the provided content thoroughly, identify issues, and suggest improvements with detailed explanations."
elif any(keyword in message.lower() for keyword in ["publish", "نشر"]):
task_type = "publish"
enhanced_system_prompt = f"{system_prompt}\nPrepare content for publishing, ensuring clarity, professionalism, and adherence to best practices."
else:
enhanced_system_prompt = f"{system_prompt}\nFor general queries, provide comprehensive, detailed responses with examples and explanations where applicable."
if len(message.split()) < 5:
enhanced_system_prompt += "\nEven for short or general queries, provide a detailed, in-depth response."
logger.info(f"Task type detected: {task_type}")
input_messages: List[dict] = [{"role": "system", "content": enhanced_system_prompt}]
if chat_history:
for msg in chat_history:
clean_msg = {"role": msg.get("role"), "content": msg.get("content")}
if clean_msg["content"]:
input_messages.append(clean_msg)
if deep_search:
try:
search_result = web_search(message)
input_messages.append({"role": "user", "content": f"User query: {message}\nWeb search context: {search_result}"})
except Exception as e:
logger.error(f"Web search failed: {e}")
input_messages.append({"role": "user", "content": message})
else:
input_messages.append({"role": "user", "content": message})
tools = tools if tools and model_name in [MODEL_NAME, SECONDARY_MODEL_NAME, TERTIARY_MODEL_NAME] else []
tool_choice = tool_choice if tool_choice in ["auto", "none", "any", "required"] and model_name in [MODEL_NAME, SECONDARY_MODEL_NAME, TERTIARY_MODEL_NAME] else "none"
cached_chunks = []
try:
stream = client.chat.completions.create(
model=model_name,
messages=input_messages,
temperature=temperature,
max_tokens=max_new_tokens,
stream=True,
tools=tools,
tool_choice=tool_choice,
)
reasoning_started = False
reasoning_closed = False
saw_visible_output = False
last_tool_name = None
last_tool_args = None
for chunk in stream:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
if content == "<|channel|>analysis<|message|>":
if not reasoning_started:
cached_chunks.append("analysis")
yield "analysis"
reasoning_started = True
continue
if content == "<|channel|>final<|message|>":
if reasoning_started and not reasoning_closed:
cached_chunks.append("assistantfinal")
yield "assistantfinal"
reasoning_closed = True
continue
saw_visible_output = True
buffer += content
if "\n" in buffer or len(buffer) > 5000:
cached_chunks.append(buffer)
yield buffer
buffer = ""
continue
if chunk.choices[0].delta.tool_calls and model_name in [MODEL_NAME, SECONDARY_MODEL_NAME, TERTIARY_MODEL_NAME]:
tool_call = chunk.choices[0].delta.tool_calls[0]
name = getattr(tool_call, "function", {}).get("name", None)
args = getattr(tool_call, "function", {}).get("arguments", None)
if name:
last_tool_name = name
if args:
last_tool_args = args
continue
if chunk.choices[0].finish_reason in ("stop", "tool_calls", "error", "length"):
if buffer:
cached_chunks.append(buffer)
yield buffer
buffer = ""
if reasoning_started and not reasoning_closed:
cached_chunks.append("assistantfinal")
yield "assistantfinal"
reasoning_closed = True
if not saw_visible_output:
msg = "I attempted to call a tool, but tools aren't executed in this environment."
if last_tool_name:
try:
args_text = json.dumps(last_tool_args, ensure_ascii=False, default=str)
except Exception:
args_text = str(last_tool_args)
msg += f"\n\n• Tool requested: **{last_tool_name}**\n• Arguments: `{args_text}`"
cached_chunks.append(msg)
yield msg
if chunk.choices[0].finish_reason == "error":
cached_chunks.append(f"Error: Unknown error")
yield f"Error: Unknown error"
elif chunk.choices[0].finish_reason == "length":
cached_chunks.append("Response truncated due to token limit.")
yield "Response truncated due to token limit."
break
if buffer:
cached_chunks.append(buffer)
yield buffer
if output_format == "audio":
try:
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
processor = AutoProcessor.from_pretrained(TTS_MODEL)
inputs = processor(text=buffer, return_tensors="pt")
audio = model.generate(**inputs)
audio_file = io.BytesIO()
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
audio_file.seek(0)
audio_data = audio_file.read()
cached_chunks.append(audio_data)
yield audio_data
except Exception as e:
logger.error(f"Text-to-speech conversion failed: {e}")
yield f"Error: Text-to-speech conversion failed: {e}"
cache[cache_key] = cached_chunks
except Exception as e:
logger.error(f"[Gateway] Streaming failed for model {model_name}: {e}")
if selected_api_key != BACKUP_HF_TOKEN and BACKUP_HF_TOKEN:
logger.warning(f"Retrying with backup token for {model_name}")
for chunk in request_generation(
api_key=BACKUP_HF_TOKEN,
api_base=selected_endpoint,
message=message,
system_prompt=system_prompt,
model_name=model_name,
chat_history=chat_history,
temperature=temperature,
max_new_tokens=max_new_tokens,
reasoning_effort=reasoning_effort,
tools=tools,
tool_choice=tool_choice,
deep_search=deep_search,
input_type=input_type,
audio_data=audio_data,
image_data=image_data,
output_format=output_format,
):
yield chunk
return
if model_name == MODEL_NAME:
fallback_model = SECONDARY_MODEL_NAME
fallback_endpoint = FALLBACK_API_ENDPOINT
logger.info(f"Retrying with fallback model: {fallback_model} on {fallback_endpoint}")
try:
is_available, selected_api_key, selected_endpoint = check_model_availability(fallback_model, selected_api_key)
if not is_available:
yield f"Error: Fallback model {fallback_model} is not available."
return
client = OpenAI(api_key=selected_api_key, base_url=selected_endpoint, timeout=120.0)
stream = client.chat.completions.create(
model=fallback_model,
messages=input_messages,
temperature=temperature,
max_tokens=max_new_tokens,
stream=True,
tools=[],
tool_choice="none",
)
buffer = "" # تعريف buffer للنموذج البديل
for chunk in stream:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
if content == "<|channel|>analysis<|message|>":
if not reasoning_started:
cached_chunks.append("analysis")
yield "analysis"
reasoning_started = True
continue
if content == "<|channel|>final<|message|>":
if reasoning_started and not reasoning_closed:
cached_chunks.append("assistantfinal")
yield "assistantfinal"
reasoning_closed = True
continue
saw_visible_output = True
buffer += content
if "\n" in buffer or len(buffer) > 5000:
cached_chunks.append(buffer)
yield buffer
buffer = ""
continue
if chunk.choices[0].finish_reason in ("stop", "error", "length"):
if buffer:
cached_chunks.append(buffer)
yield buffer
buffer = ""
if reasoning_started and not reasoning_closed:
cached_chunks.append("assistantfinal")
yield "assistantfinal"
reasoning_closed = True
if not saw_visible_output:
cached_chunks.append("No visible output produced.")
yield "No visible output produced."
if chunk.choices[0].finish_reason == "error":
cached_chunks.append(f"Error: Unknown error with fallback model {fallback_model}")
yield f"Error: Unknown error with fallback model {fallback_model}"
elif chunk.choices[0].finish_reason == "length":
cached_chunks.append("Response truncated due to token limit.")
yield "Response truncated due to token limit."
break
if buffer and output_format == "audio":
try:
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
processor = AutoProcessor.from_pretrained(TTS_MODEL)
inputs = processor(text=buffer, return_tensors="pt")
audio = model.generate(**inputs)
audio_file = io.BytesIO()
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
audio_file.seek(0)
audio_data = audio_file.read()
cached_chunks.append(audio_data)
yield audio_data
except Exception as e:
logger.error(f"Text-to-speech conversion failed: {e}")
yield f"Error: Text-to-speech conversion failed: {e}"
cache[cache_key] = cached_chunks
except Exception as e2:
logger.error(f"[Gateway] Streaming failed for fallback model {fallback_model}: {e2}")
try:
is_available, selected_api_key, selected_endpoint = check_model_availability(TERTIARY_MODEL_NAME, selected_api_key)
if not is_available:
yield f"Error: Tertiary model {TERTIARY_MODEL_NAME} is not available."
return
client = OpenAI(api_key=selected_api_key, base_url=selected_endpoint, timeout=120.0)
stream = client.chat.completions.create(
model=TERTIARY_MODEL_NAME,
messages=input_messages,
temperature=temperature,
max_tokens=max_new_tokens,
stream=True,
tools=[],
tool_choice="none",
)
buffer = "" # تعريف buffer للنموذج الثالث
for chunk in stream:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
saw_visible_output = True
buffer += content
if "\n" in buffer or len(buffer) > 5000:
cached_chunks.append(buffer)
yield buffer
buffer = ""
continue
if chunk.choices[0].finish_reason in ("stop", "error", "length"):
if buffer:
cached_chunks.append(buffer)
yield buffer
buffer = ""
if not saw_visible_output:
cached_chunks.append("No visible output produced.")
yield "No visible output produced."
if chunk.choices[0].finish_reason == "error":
cached_chunks.append(f"Error: Unknown error with tertiary model {TERTIARY_MODEL_NAME}")
yield f"Error: Unknown error with tertiary model {TERTIARY_MODEL_NAME}"
elif chunk.choices[0].finish_reason == "length":
cached_chunks.append("Response truncated due to token limit.")
yield "Response truncated due to token limit."
break
if buffer and output_format == "audio":
try:
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
processor = AutoProcessor.from_pretrained(TTS_MODEL)
inputs = processor(text=buffer, return_tensors="pt")
audio = model.generate(**inputs)
audio_file = io.BytesIO()
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
audio_file.seek(0)
audio_data = audio_file.read()
cached_chunks.append(audio_data)
yield audio_data
except Exception as e:
logger.error(f"Text-to-speech conversion failed: {e}")
yield f"Error: Text-to-speech conversion failed: {e}"
cache[cache_key] = cached_chunks
except Exception as e3:
logger.error(f"[Gateway] Streaming failed for tertiary model {TERTIARY_MODEL_NAME}: {e3}")
yield f"Error: Failed to load all models: Primary ({model_name}), Secondary ({fallback_model}), Tertiary ({TERTIARY_MODEL_NAME})."
return
else:
yield f"Error: Failed to load model {model_name}: {e}"
return
def format_final(analysis_text: str, visible_text: str) -> str:
reasoning_safe = html.escape((analysis_text or "").strip())
response = (visible_text or "").strip()
if not reasoning_safe and not response:
return "No response generated."
return (
"<details><summary><strong>🤔 Analysis</strong></summary>\n"
"<pre style='white-space:pre-wrap;'>"
f"{reasoning_safe}"
"</pre>\n</details>\n\n"
"**💬 Response:**\n\n"
f"{response}" if response else "No final response available."
)
def generate(message, history, system_prompt, temperature, reasoning_effort, enable_browsing, max_new_tokens, input_type="text", audio_data=None, image_data=None, output_format="text"):
if not message.strip() and not audio_data and not image_data:
yield "Please enter a prompt or upload a file."
return
model_name, api_endpoint = select_model(message, input_type=input_type)
chat_history = []
for h in history:
if isinstance(h, dict):
clean_msg = {"role": h.get("role"), "content": h.get("content")}
if clean_msg["content"]:
chat_history.append(clean_msg)
elif isinstance(h, (list, tuple)) and len(h) == 2:
u, a = h
if u: chat_history.append({"role": "user", "content": u})
if a: chat_history.append({"role": "assistant", "content": a})
tools = [
{
"type": "function",
"function": {
"name": "web_search_preview",
"description": "Perform a web search to gather additional context",
"parameters": {
"type": "object",
"properties": {"query": {"type": "string", "description": "Search query"}},
"required": ["query"],
},
},
},
{
"type": "function",
"function": {
"name": "code_generation",
"description": "Generate or modify code for various frameworks",
"parameters": {
"type": "object",
"properties": {
"code": {"type": "string", "description": "Existing code to modify or empty for new code"},
"framework": {"type": "string", "description": "Framework (e.g., React, Django, Flask)"},
"task": {"type": "string", "description": "Task description (e.g., create a component, fix a bug)"},
},
"required": ["task"],
},
},
},
{
"type": "function",
"function": {
"name": "code_formatter",
"description": "Format code for readability and consistency",
"parameters": {
"type": "object",
"properties": {
"code": {"type": "string", "description": "Code to format"},
"language": {"type": "string", "description": "Programming language (e.g., Python, JavaScript)"},
},
"required": ["code", "language"],
},
},
},
{
"type": "function",
"function": {
"name": "image_analysis",
"description": "Analyze or describe an image based on the provided query",
"parameters": {
"type": "object",
"properties": {
"image_url": {"type": "string", "description": "URL of the image to analyze"},
"task": {"type": "string", "description": "Task description (e.g., describe, classify)"},
},
"required": ["task"],
},
},
}
] if model_name in [MODEL_NAME, SECONDARY_MODEL_NAME, TERTIARY_MODEL_NAME] else []
tool_choice = "auto" if model_name in [MODEL_NAME, SECONDARY_MODEL_NAME, TERTIARY_MODEL_NAME] else "none"
in_analysis = False
in_visible = False
raw_analysis = ""
raw_visible = ""
raw_started = False
last_flush_len = 0
def make_raw_preview() -> str:
return (
"""```text
Analysis (live):
{raw_analysis}
Response (draft):
{raw_visible}
```""".format(raw_analysis=raw_analysis, raw_visible=raw_visible)
)
try:
stream = request_generation(
api_key=HF_TOKEN,
api_base=api_endpoint,
message=message,
system_prompt=system_prompt,
model_name=model_name,
chat_history=chat_history,
temperature=temperature,
max_new_tokens=max_new_tokens,
tools=tools,
tool_choice=tool_choice,
deep_search=enable_browsing,
input_type=input_type,
audio_data=audio_data,
image_data=image_data,
output_format=output_format,
)
for chunk in stream:
if isinstance(chunk, bytes):
yield chunk
continue
if chunk == "analysis":
in_analysis, in_visible = True, False
if not raw_started:
raw_started = True
yield make_raw_preview()
continue
if chunk == "assistantfinal":
in_analysis, in_visible = False, True
if not raw_started:
raw_started = True
yield make_raw_preview()
continue
if in_analysis:
raw_analysis += chunk
elif in_visible:
raw_visible += chunk
else:
raw_visible += chunk
total_len = len(raw_analysis) + len(raw_visible)
if total_len - last_flush_len >= 120 or "\n" in chunk:
last_flush_len = total_len
yield make_raw_preview()
final_markdown = format_final(raw_analysis, raw_visible)
if final_markdown.count("$") % 2:
final_markdown += "$"
yield final_markdown
except Exception as e:
logger.exception("Stream failed")
yield f"❌ Error: {e}"
|