ReaLens / best_ldr.py
Abubakar740
Upload LDR to HDR application files
2232b2c
#!/usr/bin/env python3
"""
make_cyclegan_dataset.py
Create paired datasets (setA, setB) for CycleGAN training from your dataset.
What it does:
- Walks the dataset root (e.g. ../jpeg_stage1Just0)
- Finds scene directories that contain both a `source/` subfolder with >= min_images
and an `output/` subfolder with at least one image.
- For each scene: selects the best LDR from `source/` (using metrics: clipped, coverage,
exposure centering, sharpness, noise), copies that chosen source image into outdir/setA/,
copies the scene's output image into outdir/setB/ but renames it to the chosen source filename.
- Writes CSV and JSON reports with metric breakdowns.
Usage:
python make_cyclegan_dataset.py --root ../jpeg_stage1Just0 --outdir ./cyclegan_data
Dependencies:
pip install opencv-python pillow numpy
Author: ChatGPT (opinionated: default weights favor low clipping and good coverage)
"""
import argparse
import os
from pathlib import Path
import json
import csv
import shutil
from math import fabs
import numpy as np
import cv2
from PIL import Image, ExifTags
IMG_EXTS = {".jpg", ".jpeg", ".png", ".tif", ".tiff", ".bmp", ".webp"}
# ------------------ Image / metric helpers ------------------
def is_image_file(p: Path):
return p.suffix.lower() in IMG_EXTS and p.is_file()
def list_images(folder: Path):
if not folder.exists():
return []
return sorted([p for p in folder.iterdir() if is_image_file(p)])
def read_image_gray(path: Path, resize_max=None):
"""Read color then convert to grayscale float32 [0,1]. Uses cv2.imdecode to handle weird filenames."""
arr = np.fromfile(str(path), dtype=np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
if img is None:
raise IOError(f"Failed to read image {path}")
if resize_max:
h, w = img.shape[:2]
scale = resize_max / max(h, w) if max(h, w) > resize_max else 1.0
if scale != 1.0:
img = cv2.resize(img, (int(w*scale), int(h*scale)), interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
return gray
def clipped_ratio(gray):
total = gray.size
high = np.count_nonzero(gray >= 0.992)
low = np.count_nonzero(gray <= 0.008)
return float(high + low) / float(total)
def histogram_coverage(gray, bins=256, min_frac=0.001):
hist, _ = np.histogram((gray * 255).astype(np.uint8), bins=bins, range=(0,255))
threshold = max(1, int(min_frac * gray.size))
covered = np.count_nonzero(hist >= threshold)
return float(covered) / float(bins)
def exposure_distance(gray):
return float(abs(float(np.mean(gray)) - 0.5))
def sharpness_metric(gray):
lap = cv2.Laplacian((gray * 255).astype(np.uint8), cv2.CV_64F)
return float(np.var(lap))
def noise_estimate(gray):
blur = cv2.GaussianBlur(gray, (3,3), 0)
hf = gray - blur
return float(np.std(hf))
def minmax_normalize(vals, eps=1e-8):
arr = np.array(vals, dtype=np.float64)
mn = float(arr.min())
mx = float(arr.max())
if mx - mn < eps:
# all equal -> zeros
return np.zeros_like(arr)
return (arr - mn) / (mx - mn)
# ------------------ Selection & scene processing ------------------
def compute_metrics_for_images(image_paths, resize_max):
records = []
for p in image_paths:
try:
g = read_image_gray(p, resize_max=resize_max)
except Exception as e:
print(f" WARNING: cannot read {p}: {e}")
continue
rec = {
"path": str(p),
"name": p.name,
"clipped": clipped_ratio(g),
"coverage": histogram_coverage(g),
"exposure_dist": exposure_distance(g),
"sharpness": sharpness_metric(g),
"noise": noise_estimate(g)
}
records.append(rec)
return records
def score_records(records, weights):
if not records:
return []
clipped_vals = [r["clipped"] for r in records]
cov_vals = [r["coverage"] for r in records]
exp_vals = [r["exposure_dist"] for r in records]
sharp_vals = [r["sharpness"] for r in records]
noise_vals = [r["noise"] for r in records]
clipped_n = minmax_normalize(clipped_vals)
cov_n = minmax_normalize(cov_vals)
exp_n = minmax_normalize(exp_vals)
sharp_n = minmax_normalize(sharp_vals)
noise_n = minmax_normalize(noise_vals)
scored = []
for i, r in enumerate(records):
score = 0.0
score += weights["clipped"] * (1.0 - float(clipped_n[i])) # less clipping -> better
score += weights["coverage"] * float(cov_n[i]) # more coverage -> better
score += weights["exposure"] * (1.0 - float(exp_n[i])) # closer to mid gray -> better
score += weights["sharpness"] * float(sharp_n[i]) # sharper -> better
score += weights["noise"] * (1.0 - float(noise_n[i])) # less noise -> better
rec = dict(r)
rec.update({
"clipped_n": float(clipped_n[i]),
"coverage_n": float(cov_n[i]),
"exposure_n": float(exp_n[i]),
"sharpness_n": float(sharp_n[i]),
"noise_n": float(noise_n[i]),
"score": float(score)
})
scored.append(rec)
scored_sorted = sorted(scored, key=lambda x: x["score"], reverse=True)
return scored_sorted
def find_output_image(output_folder: Path):
imgs = list_images(output_folder)
if not imgs:
return None
# Prefer file with same name as parent folder (if present), else pick largest file
parent_name = output_folder.parent.name
for p in imgs:
if p.stem == parent_name:
return p
# otherwise pick largest by file size (likely the main image)
imgs_sorted = sorted(imgs, key=lambda x: x.stat().st_size, reverse=True)
return imgs_sorted[0]
# ------------------ Main procedure ------------------
def make_dataset(root: Path, outdir: Path, min_images: int,
resize_max: int, weights: dict, copy_method="copy"):
scenes_found = 0
results = []
setA = outdir / "setA"
setB = outdir / "setB"
os.makedirs(setA, exist_ok=True)
os.makedirs(setB, exist_ok=True)
# Walk the tree and find directories that contain both source/ and output/
for dirpath, dirnames, filenames in os.walk(root):
d = Path(dirpath)
src_dir = d / "source"
out_dir = d / "output"
if not src_dir.exists() or not out_dir.exists():
continue
src_imgs = list_images(src_dir)
if len(src_imgs) < min_images:
# skip small scenes
continue
scenes_found += 1
print(f"[{scenes_found}] Scene: {d} ({len(src_imgs)} source images)")
# compute metrics and choose best
records = compute_metrics_for_images(src_imgs, resize_max=resize_max)
if not records:
print(" No readable source images, skipping.")
continue
scored = score_records(records, weights)
chosen = scored[0]
chosen_path = Path(chosen["path"])
chosen_name = chosen_path.name # used for setA filename (and setB target name)
# find output image for this scene
out_img = find_output_image(out_dir)
if out_img is None:
print(f" WARNING: no output image found in {out_dir}; skipping copying pair.")
out_img_path = None
else:
out_img_path = out_img
# destination paths
destA = setA / chosen_name
destB = setB / chosen_name
# copy or symlink
try:
if copy_method == "symlink":
if destA.exists():
destA.unlink()
os.symlink(os.path.abspath(chosen_path), destA)
else:
shutil.copy2(chosen_path, destA)
except Exception as e:
print(f" ERROR copying source -> {destA}: {e}")
if out_img_path is not None:
try:
if copy_method == "symlink":
if destB.exists():
destB.unlink()
os.symlink(os.path.abspath(out_img_path), destB)
else:
shutil.copy2(out_img_path, destB)
except Exception as e:
print(f" ERROR copying output -> {destB}: {e}")
# record result
result = {
"scene_dir": str(d),
"source_dir": str(src_dir),
"output_dir": str(out_dir),
"chosen_source_path": str(chosen_path),
"chosen_source_name": chosen_name,
"chosen_score": chosen["score"],
"metrics": {
"clipped": chosen["clipped"],
"coverage": chosen["coverage"],
"exposure_dist": chosen["exposure_dist"],
"sharpness": chosen["sharpness"],
"noise": chosen["noise"],
"clipped_n": chosen["clipped_n"],
"coverage_n": chosen["coverage_n"],
"exposure_n": chosen["exposure_n"],
"sharpness_n": chosen["sharpness_n"],
"noise_n": chosen["noise_n"],
},
"output_image_used": str(out_img_path) if out_img_path is not None else None,
"destA": str(destA),
"destB": str(destB) if out_img_path is not None else None
}
results.append(result)
# print top 3 for quick audit
print(" Top candidates:")
for c in scored[:3]:
print(f" {c['score']:.4f} clipped={c['clipped']:.4f} cov={c['coverage']:.4f} expd={c['exposure_dist']:.4f} sharp={c['sharpness']:.1f} noise={c['noise']:.5f} -> {Path(c['path']).name}")
# write reports
out_csv = outdir / "paired_selection.csv"
out_json = outdir / "paired_selection.json"
with open(out_json, "w", encoding="utf-8") as jf:
json.dump(results, jf, indent=2)
with open(out_csv, "w", newline="", encoding="utf-8") as cf:
writer = csv.writer(cf)
header = ["scene_dir", "source_dir", "output_dir", "chosen_source_name", "chosen_source_path",
"chosen_score", "output_image_used", "destA", "destB"]
writer.writerow(header)
for r in results:
writer.writerow([r.get(h, "") for h in header])
print(f"\nDone. Scenes processed: {scenes_found}")
print(f"Paired data saved to:\n {setA}\n {setB}")
print(f"Reports: {out_csv} , {out_json}")
return results
# ------------------ CLI ------------------
def parse_weights(s):
parts = [float(x.strip()) for x in s.split(",")]
if len(parts) != 5:
raise argparse.ArgumentTypeError("weights must be 5 comma-separated numbers")
ssum = sum(parts)
if ssum == 0:
raise argparse.ArgumentTypeError("weights sum must be > 0")
return [p / ssum for p in parts]
def main():
ap = argparse.ArgumentParser(description="Make paired CycleGAN dataset from your LDR/HDR scene layout.")
ap.add_argument("--root", "-r", required=True, help="Root of dataset (e.g. ../jpeg_stage1Just0)")
ap.add_argument("--outdir", "-o", default="./cyclegan_data", help="Output folder for paired dataset")
ap.add_argument("--min_images", type=int, default=2, help="Minimum images in source/ to consider scene")
ap.add_argument("--resize_max", type=int, default=1024, help="Resize longest side for metric calc (speeds up)")
ap.add_argument("--weights", type=parse_weights, default="0.35,0.25,0.15,0.15,0.10",
help="5 weights: clipped,coverage,exposure,sharpness,noise (will be normalized)")
ap.add_argument("--copy_method", choices=["copy", "symlink"], default="copy",
help="copy files or create symlinks (symlink saves disk space)")
args = ap.parse_args()
root = Path(args.root).expanduser().resolve()
outdir = Path(args.outdir).expanduser().resolve()
w = args.weights if isinstance(args.weights, list) else args.weights # parse_weights returns list
weights = {
"clipped": w[0],
"coverage": w[1],
"exposure": w[2],
"sharpness": w[3],
"noise": w[4]
}
print("Using weights:", weights)
outdir.mkdir(parents=True, exist_ok=True)
make_dataset(root, outdir, min_images=args.min_images,
resize_max=args.resize_max, weights=weights, copy_method=args.copy_method)
if __name__ == "__main__":
main()