|
import os |
|
import torch |
|
import torch.distributed as dist |
|
from pathlib import Path |
|
from collections import OrderedDict |
|
from abc import ABC, abstractmethod |
|
from . import networks |
|
|
|
|
|
class BaseModel(ABC): |
|
"""This class is an abstract base class (ABC) for models. |
|
To create a subclass, you need to implement the following five functions: |
|
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). |
|
-- <set_input>: unpack data from dataset and apply preprocessing. |
|
-- <forward>: produce intermediate results. |
|
-- <optimize_parameters>: calculate losses, gradients, and update network weights. |
|
-- <modify_commandline_options>: (optionally) add model-specific options and set default options. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize the BaseModel class. |
|
|
|
Parameters: |
|
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
|
|
When creating your custom class, you need to implement your own initialization. |
|
In this function, you should first call <BaseModel.__init__(self, opt)> |
|
Then, you need to define four lists: |
|
-- self.loss_names (str list): specify the training losses that you want to plot and save. |
|
-- self.model_names (str list): define networks used in our training. |
|
-- self.visual_names (str list): specify the images that you want to display and save. |
|
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. |
|
""" |
|
self.opt = opt |
|
self.isTrain = opt.isTrain |
|
self.save_dir = Path(opt.checkpoints_dir) / opt.name |
|
self.device = opt.device |
|
|
|
if opt.preprocess != "scale_width": |
|
torch.backends.cudnn.benchmark = True |
|
self.loss_names = [] |
|
self.model_names = [] |
|
self.visual_names = [] |
|
self.optimizers = [] |
|
self.image_paths = [] |
|
self.metric = 0 |
|
|
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
"""Add new model-specific options, and rewrite default values for existing options. |
|
|
|
Parameters: |
|
parser -- original option parser |
|
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. |
|
|
|
Returns: |
|
the modified parser. |
|
""" |
|
return parser |
|
|
|
@abstractmethod |
|
def set_input(self, input): |
|
"""Unpack input data from the dataloader and perform necessary pre-processing steps. |
|
|
|
Parameters: |
|
input (dict): includes the data itself and its metadata information. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def forward(self): |
|
"""Run forward pass; called by both functions <optimize_parameters> and <test>.""" |
|
pass |
|
|
|
@abstractmethod |
|
def optimize_parameters(self): |
|
"""Calculate losses, gradients, and update network weights; called in every training iteration""" |
|
pass |
|
|
|
def setup(self, opt): |
|
"""Load and print networks; create schedulers |
|
|
|
Parameters: |
|
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
""" |
|
|
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
net = getattr(self, "net" + name) |
|
net = networks.init_net(net, opt.init_type, opt.init_gain) |
|
|
|
|
|
if not self.isTrain or opt.continue_train: |
|
load_suffix = f"iter_{opt.load_iter}" if opt.load_iter > 0 else opt.epoch |
|
load_filename = f"{load_suffix}_net_{name}.pth" |
|
load_path = self.save_dir / load_filename |
|
|
|
if isinstance(net, torch.nn.parallel.DistributedDataParallel): |
|
net = net.module |
|
print(f"loading the model from {load_path}") |
|
|
|
state_dict = torch.load(load_path, map_location=str(self.device), weights_only=True) |
|
|
|
if hasattr(state_dict, "_metadata"): |
|
del state_dict._metadata |
|
|
|
|
|
for key in list(state_dict.keys()): |
|
self.__patch_instance_norm_state_dict(state_dict, net, key.split(".")) |
|
net.load_state_dict(state_dict) |
|
|
|
|
|
net.to(self.device) |
|
|
|
|
|
if dist.is_initialized(): |
|
|
|
if self.opt.norm == "syncbatch": |
|
raise ValueError(f"For distributed training, opt.norm must be 'syncbatch' or 'inst', but got '{self.opt.norm}'. " "Please set --norm syncbatch for multi-GPU training.") |
|
|
|
net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[self.device.index]) |
|
|
|
dist.barrier() |
|
|
|
setattr(self, "net" + name, net) |
|
|
|
self.print_networks(opt.verbose) |
|
|
|
if self.isTrain: |
|
self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] |
|
|
|
def eval(self): |
|
"""Make models eval mode during test time""" |
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
net = getattr(self, "net" + name) |
|
net.eval() |
|
|
|
def test(self): |
|
"""Forward function used in test time. |
|
|
|
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop |
|
It also calls <compute_visuals> to produce additional visualization results |
|
""" |
|
with torch.no_grad(): |
|
self.forward() |
|
self.compute_visuals() |
|
|
|
def compute_visuals(self): |
|
"""Calculate additional output images for visdom and HTML visualization""" |
|
pass |
|
|
|
def get_image_paths(self): |
|
"""Return image paths that are used to load current data""" |
|
return self.image_paths |
|
|
|
def update_learning_rate(self): |
|
"""Update learning rates for all the networks; called at the end of every epoch""" |
|
old_lr = self.optimizers[0].param_groups[0]["lr"] |
|
for scheduler in self.schedulers: |
|
if self.opt.lr_policy == "plateau": |
|
scheduler.step(self.metric) |
|
else: |
|
scheduler.step() |
|
|
|
lr = self.optimizers[0].param_groups[0]["lr"] |
|
print(f"learning rate {old_lr:.7f} -> {lr:.7f}") |
|
|
|
def get_current_visuals(self): |
|
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" |
|
visual_ret = OrderedDict() |
|
for name in self.visual_names: |
|
if isinstance(name, str): |
|
visual_ret[name] = getattr(self, name) |
|
return visual_ret |
|
|
|
def get_current_losses(self): |
|
"""Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" |
|
errors_ret = OrderedDict() |
|
for name in self.loss_names: |
|
if isinstance(name, str): |
|
errors_ret[name] = float(getattr(self, "loss_" + name)) |
|
return errors_ret |
|
|
|
def save_networks(self, epoch): |
|
"""Save all the networks to the disk, unwrapping them first.""" |
|
|
|
|
|
if not dist.is_initialized() or dist.get_rank() == 0: |
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
save_filename = f"{epoch}_net_{name}.pth" |
|
save_path = self.save_dir / save_filename |
|
net = getattr(self, "net" + name) |
|
|
|
|
|
if hasattr(net, "module"): |
|
model_to_save = net.module |
|
else: |
|
model_to_save = net |
|
|
|
|
|
if hasattr(model_to_save, "_orig_mod"): |
|
model_to_save = model_to_save._orig_mod |
|
|
|
|
|
torch.save(model_to_save.state_dict(), save_path) |
|
|
|
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): |
|
"""Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" |
|
key = keys[i] |
|
if i + 1 == len(keys): |
|
if module.__class__.__name__.startswith("InstanceNorm") and (key == "running_mean" or key == "running_var"): |
|
if getattr(module, key) is None: |
|
state_dict.pop(".".join(keys)) |
|
if module.__class__.__name__.startswith("InstanceNorm") and (key == "num_batches_tracked"): |
|
state_dict.pop(".".join(keys)) |
|
else: |
|
self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) |
|
|
|
def load_networks(self, epoch): |
|
"""Load all networks from the disk for DDP.""" |
|
|
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
load_filename = f"{epoch}_net_{name}.pth" |
|
load_path = self.save_dir / load_filename |
|
net = getattr(self, "net" + name) |
|
|
|
if isinstance(net, torch.nn.parallel.DistributedDataParallel): |
|
net = net.module |
|
print(f"loading the model from {load_path}") |
|
|
|
state_dict = torch.load(load_path, map_location=str(self.device), weights_only=True) |
|
|
|
if hasattr(state_dict, "_metadata"): |
|
del state_dict._metadata |
|
|
|
|
|
for key in list(state_dict.keys()): |
|
self.__patch_instance_norm_state_dict(state_dict, net, key.split(".")) |
|
net.load_state_dict(state_dict) |
|
|
|
|
|
if dist.is_initialized(): |
|
dist.barrier() |
|
|
|
def print_networks(self, verbose): |
|
"""Print the total number of parameters in the network and (if verbose) network architecture |
|
|
|
Parameters: |
|
verbose (bool) -- if verbose: print the network architecture |
|
""" |
|
print("---------- Networks initialized -------------") |
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
net = getattr(self, "net" + name) |
|
num_params = 0 |
|
for param in net.parameters(): |
|
num_params += param.numel() |
|
if verbose: |
|
print(net) |
|
print(f"[Network {name}] Total number of parameters : {num_params / 1e6:.3f} M") |
|
print("-----------------------------------------------") |
|
|
|
def set_requires_grad(self, nets, requires_grad=False): |
|
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations |
|
Parameters: |
|
nets (network list) -- a list of networks |
|
requires_grad (bool) -- whether the networks require gradients or not |
|
""" |
|
if not isinstance(nets, list): |
|
nets = [nets] |
|
for net in nets: |
|
if net is not None: |
|
for param in net.parameters(): |
|
param.requires_grad = requires_grad |
|
|
|
def init_networks(self, init_type="normal", init_gain=0.02): |
|
"""Initialize all networks: 1. move to device; 2. initialize weights |
|
|
|
Parameters: |
|
init_type (str) -- initialization method: normal | xavier | kaiming | orthogonal |
|
init_gain (float) -- scaling factor for normal, xavier and orthogonal |
|
""" |
|
import os |
|
|
|
for name in self.model_names: |
|
if isinstance(name, str): |
|
net = getattr(self, "net" + name) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
if "LOCAL_RANK" in os.environ: |
|
local_rank = int(os.environ["LOCAL_RANK"]) |
|
net.to(local_rank) |
|
print(f"Initialized network {name} with device cuda:{local_rank}") |
|
else: |
|
net.to(0) |
|
print(f"Initialized network {name} with device cuda:0") |
|
else: |
|
net.to("cpu") |
|
print(f"Initialized network {name} with device cpu") |
|
|
|
|
|
networks.init_weights(net, init_type, init_gain) |
|
|