|
import numpy as np |
|
import sys |
|
import ntpath |
|
import time |
|
from . import util, html |
|
from pathlib import Path |
|
import wandb |
|
import os |
|
import torch.distributed as dist |
|
|
|
|
|
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): |
|
"""Save images to the disk. |
|
|
|
Parameters: |
|
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) |
|
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs |
|
image_path (str) -- the string is used to create image paths |
|
aspect_ratio (float) -- the aspect ratio of saved images |
|
width (int) -- the images will be resized to width x width |
|
|
|
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. |
|
""" |
|
image_dir = webpage.get_image_dir() |
|
name = Path(image_path[0]).stem |
|
|
|
webpage.add_header(name) |
|
ims, txts, links = [], [], [] |
|
for label, im_data in visuals.items(): |
|
im = util.tensor2im(im_data) |
|
image_name = f"{name}_{label}.png" |
|
save_path = image_dir / image_name |
|
util.save_image(im, save_path, aspect_ratio=aspect_ratio) |
|
ims.append(image_name) |
|
txts.append(label) |
|
links.append(image_name) |
|
webpage.add_images(ims, txts, links, width=width) |
|
|
|
|
|
class Visualizer: |
|
"""This class includes several functions that can display/save images and print/save logging information. |
|
|
|
It uses wandb for logging (optional) and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize the Visualizer class |
|
|
|
Parameters: |
|
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
Step 1: Cache the training/test options |
|
Step 2: Initialize wandb (if enabled) |
|
Step 3: create an HTML object for saving HTML files |
|
Step 4: create a logging file to store training losses |
|
""" |
|
self.opt = opt |
|
self.use_html = opt.isTrain and not opt.no_html |
|
self.win_size = opt.display_winsize |
|
self.name = opt.name |
|
self.saved = False |
|
self.use_wandb = opt.use_wandb |
|
self.current_epoch = 0 |
|
|
|
|
|
if self.use_wandb: |
|
|
|
if not dist.is_initialized() or dist.get_rank() == 0: |
|
self.wandb_project_name = getattr(opt, "wandb_project_name", "CycleGAN-and-pix2pix") |
|
self.wandb_run = wandb.init(project=self.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run |
|
self.wandb_run._label(repo="CycleGAN-and-pix2pix") |
|
else: |
|
self.wandb_run = None |
|
|
|
if self.use_html: |
|
self.web_dir = Path(opt.checkpoints_dir) / opt.name / "web" |
|
self.img_dir = self.web_dir / "images" |
|
print(f"create web directory {self.web_dir}...") |
|
util.mkdirs([self.web_dir, self.img_dir]) |
|
|
|
self.log_name = Path(opt.checkpoints_dir) / opt.name / "loss_log.txt" |
|
with open(self.log_name, "a") as log_file: |
|
now = time.strftime("%c") |
|
log_file.write(f"================ Training Loss ({now}) ================\n") |
|
|
|
def reset(self): |
|
"""Reset the self.saved status""" |
|
self.saved = False |
|
|
|
def set_dataset_size(self, dataset_size): |
|
"""Set the dataset size for global step calculation""" |
|
self.dataset_size = dataset_size |
|
|
|
def _calculate_global_step(self, epoch, epoch_iter): |
|
"""Calculate global step from epoch and epoch_iter""" |
|
|
|
return (epoch - 1) * self.dataset_size + epoch_iter |
|
|
|
def display_current_results(self, visuals, epoch: int, total_iters: int, save_result=False): |
|
"""Save current results to wandb and HTML file.""" |
|
|
|
if "LOCAL_RANK" in os.environ and dist.is_initialized() and dist.get_rank() != 0: |
|
return |
|
|
|
if self.use_wandb: |
|
ims_dict = {} |
|
for label, image in visuals.items(): |
|
image_numpy = util.tensor2im(image) |
|
wandb_image = wandb.Image(image_numpy, caption=f"{label} - Step {total_iters}") |
|
ims_dict[f"results/{label}"] = wandb_image |
|
self.wandb_run.log(ims_dict, step=total_iters) |
|
|
|
if self.use_html and (save_result or not self.saved): |
|
self.saved = True |
|
|
|
for label, image in visuals.items(): |
|
image_numpy = util.tensor2im(image) |
|
img_path = self.img_dir / f"epoch{epoch:03d}_{label}.png" |
|
util.save_image(image_numpy, img_path) |
|
|
|
|
|
webpage = html.HTML(self.web_dir, f"Experiment name = {self.name}", refresh=1) |
|
for n in range(epoch, 0, -1): |
|
webpage.add_header(f"epoch [{n}]") |
|
ims, txts, links = [], [], [] |
|
|
|
for label, image in visuals.items(): |
|
img_path = f"epoch{n:03d}_{label}.png" |
|
ims.append(img_path) |
|
txts.append(label) |
|
links.append(img_path) |
|
webpage.add_images(ims, txts, links, width=self.win_size) |
|
webpage.save() |
|
|
|
def plot_current_losses(self, total_iters, losses): |
|
"""Log current losses to wandb |
|
|
|
Parameters: |
|
total_iters (int) -- current training iteration during this epoch |
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs |
|
""" |
|
|
|
if dist.is_initialized() and dist.get_rank() != 0: |
|
return |
|
|
|
if self.use_wandb: |
|
self.wandb_run.log(losses, step=total_iters) |
|
|
|
def print_current_losses(self, epoch, iters, losses, t_comp, t_data): |
|
"""print current losses on console; also save the losses to the disk |
|
|
|
Parameters: |
|
epoch (int) -- current epoch |
|
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) |
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs |
|
t_comp (float) -- computational time per data point (normalized by batch_size) |
|
t_data (float) -- data loading time per data point (normalized by batch_size) |
|
""" |
|
local_rank = int(os.environ.get("LOCAL_RANK", 0)) |
|
message = f"[Rank {local_rank}] (epoch: {epoch}, iters: {iters}, time: {t_comp:.3f}, data: {t_data:.3f}) " |
|
for k, v in losses.items(): |
|
message += f", {k}: {v:.3f}" |
|
message += "\n" |
|
print(message) |
|
|
|
|
|
if local_rank == 0: |
|
with open(self.log_name, "a") as log_file: |
|
log_file.write(f"{message}\n") |
|
|