#!/usr/bin/env python3 """ make_cyclegan_dataset.py Create paired datasets (setA, setB) for CycleGAN training from your dataset. What it does: - Walks the dataset root (e.g. ../jpeg_stage1Just0) - Finds scene directories that contain both a `source/` subfolder with >= min_images and an `output/` subfolder with at least one image. - For each scene: selects the best LDR from `source/` (using metrics: clipped, coverage, exposure centering, sharpness, noise), copies that chosen source image into outdir/setA/, copies the scene's output image into outdir/setB/ but renames it to the chosen source filename. - Writes CSV and JSON reports with metric breakdowns. Usage: python make_cyclegan_dataset.py --root ../jpeg_stage1Just0 --outdir ./cyclegan_data Dependencies: pip install opencv-python pillow numpy Author: ChatGPT (opinionated: default weights favor low clipping and good coverage) """ import argparse import os from pathlib import Path import json import csv import shutil from math import fabs import numpy as np import cv2 from PIL import Image, ExifTags IMG_EXTS = {".jpg", ".jpeg", ".png", ".tif", ".tiff", ".bmp", ".webp"} # ------------------ Image / metric helpers ------------------ def is_image_file(p: Path): return p.suffix.lower() in IMG_EXTS and p.is_file() def list_images(folder: Path): if not folder.exists(): return [] return sorted([p for p in folder.iterdir() if is_image_file(p)]) def read_image_gray(path: Path, resize_max=None): """Read color then convert to grayscale float32 [0,1]. Uses cv2.imdecode to handle weird filenames.""" arr = np.fromfile(str(path), dtype=np.uint8) img = cv2.imdecode(arr, cv2.IMREAD_COLOR) if img is None: raise IOError(f"Failed to read image {path}") if resize_max: h, w = img.shape[:2] scale = resize_max / max(h, w) if max(h, w) > resize_max else 1.0 if scale != 1.0: img = cv2.resize(img, (int(w*scale), int(h*scale)), interpolation=cv2.INTER_AREA) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0 return gray def clipped_ratio(gray): total = gray.size high = np.count_nonzero(gray >= 0.992) low = np.count_nonzero(gray <= 0.008) return float(high + low) / float(total) def histogram_coverage(gray, bins=256, min_frac=0.001): hist, _ = np.histogram((gray * 255).astype(np.uint8), bins=bins, range=(0,255)) threshold = max(1, int(min_frac * gray.size)) covered = np.count_nonzero(hist >= threshold) return float(covered) / float(bins) def exposure_distance(gray): return float(abs(float(np.mean(gray)) - 0.5)) def sharpness_metric(gray): lap = cv2.Laplacian((gray * 255).astype(np.uint8), cv2.CV_64F) return float(np.var(lap)) def noise_estimate(gray): blur = cv2.GaussianBlur(gray, (3,3), 0) hf = gray - blur return float(np.std(hf)) def minmax_normalize(vals, eps=1e-8): arr = np.array(vals, dtype=np.float64) mn = float(arr.min()) mx = float(arr.max()) if mx - mn < eps: # all equal -> zeros return np.zeros_like(arr) return (arr - mn) / (mx - mn) # ------------------ Selection & scene processing ------------------ def compute_metrics_for_images(image_paths, resize_max): records = [] for p in image_paths: try: g = read_image_gray(p, resize_max=resize_max) except Exception as e: print(f" WARNING: cannot read {p}: {e}") continue rec = { "path": str(p), "name": p.name, "clipped": clipped_ratio(g), "coverage": histogram_coverage(g), "exposure_dist": exposure_distance(g), "sharpness": sharpness_metric(g), "noise": noise_estimate(g) } records.append(rec) return records def score_records(records, weights): if not records: return [] clipped_vals = [r["clipped"] for r in records] cov_vals = [r["coverage"] for r in records] exp_vals = [r["exposure_dist"] for r in records] sharp_vals = [r["sharpness"] for r in records] noise_vals = [r["noise"] for r in records] clipped_n = minmax_normalize(clipped_vals) cov_n = minmax_normalize(cov_vals) exp_n = minmax_normalize(exp_vals) sharp_n = minmax_normalize(sharp_vals) noise_n = minmax_normalize(noise_vals) scored = [] for i, r in enumerate(records): score = 0.0 score += weights["clipped"] * (1.0 - float(clipped_n[i])) # less clipping -> better score += weights["coverage"] * float(cov_n[i]) # more coverage -> better score += weights["exposure"] * (1.0 - float(exp_n[i])) # closer to mid gray -> better score += weights["sharpness"] * float(sharp_n[i]) # sharper -> better score += weights["noise"] * (1.0 - float(noise_n[i])) # less noise -> better rec = dict(r) rec.update({ "clipped_n": float(clipped_n[i]), "coverage_n": float(cov_n[i]), "exposure_n": float(exp_n[i]), "sharpness_n": float(sharp_n[i]), "noise_n": float(noise_n[i]), "score": float(score) }) scored.append(rec) scored_sorted = sorted(scored, key=lambda x: x["score"], reverse=True) return scored_sorted def find_output_image(output_folder: Path): imgs = list_images(output_folder) if not imgs: return None # Prefer file with same name as parent folder (if present), else pick largest file parent_name = output_folder.parent.name for p in imgs: if p.stem == parent_name: return p # otherwise pick largest by file size (likely the main image) imgs_sorted = sorted(imgs, key=lambda x: x.stat().st_size, reverse=True) return imgs_sorted[0] # ------------------ Main procedure ------------------ def make_dataset(root: Path, outdir: Path, min_images: int, resize_max: int, weights: dict, copy_method="copy"): scenes_found = 0 results = [] setA = outdir / "setA" setB = outdir / "setB" os.makedirs(setA, exist_ok=True) os.makedirs(setB, exist_ok=True) # Walk the tree and find directories that contain both source/ and output/ for dirpath, dirnames, filenames in os.walk(root): d = Path(dirpath) src_dir = d / "source" out_dir = d / "output" if not src_dir.exists() or not out_dir.exists(): continue src_imgs = list_images(src_dir) if len(src_imgs) < min_images: # skip small scenes continue scenes_found += 1 print(f"[{scenes_found}] Scene: {d} ({len(src_imgs)} source images)") # compute metrics and choose best records = compute_metrics_for_images(src_imgs, resize_max=resize_max) if not records: print(" No readable source images, skipping.") continue scored = score_records(records, weights) chosen = scored[0] chosen_path = Path(chosen["path"]) chosen_name = chosen_path.name # used for setA filename (and setB target name) # find output image for this scene out_img = find_output_image(out_dir) if out_img is None: print(f" WARNING: no output image found in {out_dir}; skipping copying pair.") out_img_path = None else: out_img_path = out_img # destination paths destA = setA / chosen_name destB = setB / chosen_name # copy or symlink try: if copy_method == "symlink": if destA.exists(): destA.unlink() os.symlink(os.path.abspath(chosen_path), destA) else: shutil.copy2(chosen_path, destA) except Exception as e: print(f" ERROR copying source -> {destA}: {e}") if out_img_path is not None: try: if copy_method == "symlink": if destB.exists(): destB.unlink() os.symlink(os.path.abspath(out_img_path), destB) else: shutil.copy2(out_img_path, destB) except Exception as e: print(f" ERROR copying output -> {destB}: {e}") # record result result = { "scene_dir": str(d), "source_dir": str(src_dir), "output_dir": str(out_dir), "chosen_source_path": str(chosen_path), "chosen_source_name": chosen_name, "chosen_score": chosen["score"], "metrics": { "clipped": chosen["clipped"], "coverage": chosen["coverage"], "exposure_dist": chosen["exposure_dist"], "sharpness": chosen["sharpness"], "noise": chosen["noise"], "clipped_n": chosen["clipped_n"], "coverage_n": chosen["coverage_n"], "exposure_n": chosen["exposure_n"], "sharpness_n": chosen["sharpness_n"], "noise_n": chosen["noise_n"], }, "output_image_used": str(out_img_path) if out_img_path is not None else None, "destA": str(destA), "destB": str(destB) if out_img_path is not None else None } results.append(result) # print top 3 for quick audit print(" Top candidates:") for c in scored[:3]: print(f" {c['score']:.4f} clipped={c['clipped']:.4f} cov={c['coverage']:.4f} expd={c['exposure_dist']:.4f} sharp={c['sharpness']:.1f} noise={c['noise']:.5f} -> {Path(c['path']).name}") # write reports out_csv = outdir / "paired_selection.csv" out_json = outdir / "paired_selection.json" with open(out_json, "w", encoding="utf-8") as jf: json.dump(results, jf, indent=2) with open(out_csv, "w", newline="", encoding="utf-8") as cf: writer = csv.writer(cf) header = ["scene_dir", "source_dir", "output_dir", "chosen_source_name", "chosen_source_path", "chosen_score", "output_image_used", "destA", "destB"] writer.writerow(header) for r in results: writer.writerow([r.get(h, "") for h in header]) print(f"\nDone. Scenes processed: {scenes_found}") print(f"Paired data saved to:\n {setA}\n {setB}") print(f"Reports: {out_csv} , {out_json}") return results # ------------------ CLI ------------------ def parse_weights(s): parts = [float(x.strip()) for x in s.split(",")] if len(parts) != 5: raise argparse.ArgumentTypeError("weights must be 5 comma-separated numbers") ssum = sum(parts) if ssum == 0: raise argparse.ArgumentTypeError("weights sum must be > 0") return [p / ssum for p in parts] def main(): ap = argparse.ArgumentParser(description="Make paired CycleGAN dataset from your LDR/HDR scene layout.") ap.add_argument("--root", "-r", required=True, help="Root of dataset (e.g. ../jpeg_stage1Just0)") ap.add_argument("--outdir", "-o", default="./cyclegan_data", help="Output folder for paired dataset") ap.add_argument("--min_images", type=int, default=2, help="Minimum images in source/ to consider scene") ap.add_argument("--resize_max", type=int, default=1024, help="Resize longest side for metric calc (speeds up)") ap.add_argument("--weights", type=parse_weights, default="0.35,0.25,0.15,0.15,0.10", help="5 weights: clipped,coverage,exposure,sharpness,noise (will be normalized)") ap.add_argument("--copy_method", choices=["copy", "symlink"], default="copy", help="copy files or create symlinks (symlink saves disk space)") args = ap.parse_args() root = Path(args.root).expanduser().resolve() outdir = Path(args.outdir).expanduser().resolve() w = args.weights if isinstance(args.weights, list) else args.weights # parse_weights returns list weights = { "clipped": w[0], "coverage": w[1], "exposure": w[2], "sharpness": w[3], "noise": w[4] } print("Using weights:", weights) outdir.mkdir(parents=True, exist_ok=True) make_dataset(root, outdir, min_images=args.min_images, resize_max=args.resize_max, weights=weights, copy_method=args.copy_method) if __name__ == "__main__": main()