|
import torch |
|
import xml.etree.ElementTree as ET |
|
from PIL import Image |
|
import numpy as np |
|
from pathlib import Path |
|
import json |
|
|
|
from train import SimpleTransformer, flat_corners_from_mockup |
|
|
|
|
|
|
|
|
|
def order_points_clockwise(pts): |
|
pts = np.array(pts, dtype="float32") |
|
y_sorted = pts[np.argsort(pts[:, 1]), :] |
|
|
|
top_two = y_sorted[:2, :] |
|
bottom_two = y_sorted[2:, :] |
|
|
|
if top_two[0][0] < top_two[1][0]: |
|
tl, tr = top_two |
|
else: |
|
tr, tl = top_two |
|
|
|
if bottom_two[0][0] < bottom_two[1][0]: |
|
bl, br = bottom_two |
|
else: |
|
br, bl = bottom_two |
|
|
|
return np.array([tl, tr, br, bl], dtype="float32") |
|
|
|
|
|
|
|
|
|
def save_prediction_xml(pred_pts, out_path, img_w, img_h): |
|
ordered = order_points_clockwise(pred_pts) |
|
TL, TR, BR, BL = ordered |
|
|
|
root = ET.Element("visualization", version="1.0") |
|
ET.SubElement(root, "effects", surfacecolor="", iswood="0") |
|
ET.SubElement(root, "background", |
|
width=str(img_w), height=str(img_h), |
|
color1="#C4CDE4", color2="", color3="") |
|
|
|
transforms_node = ET.SubElement(root, "transforms") |
|
transform = ET.SubElement(transforms_node, "transform", |
|
type="FourPoint", offsetX="0", offsetY="0", offsetZ="0.0", |
|
rotationX="0.0", rotationY="0.0", rotationZ="0.0", |
|
name="Region", posCode="REGION", posName="Region", |
|
posDef="0", techCode="EMBF03", techName="Embroidery Fixed", |
|
techDef="0", areaWidth="100", areaHeight="100", |
|
maxColors="12", defaultLogoSize="100", sizeX="100", sizeY="100") |
|
|
|
pts = {"TopLeft": TL, "TopRight": TR, "BottomRight": BR, "BottomLeft": BL} |
|
for ptype, (x, y) in pts.items(): |
|
ET.SubElement(transform, "point", |
|
type=ptype, x=str(float(x)), y=str(float(y)), |
|
z="0.0", warp="0", warpShift="0") |
|
|
|
overlays = ET.SubElement(root, "overlays") |
|
overlay = ET.SubElement(overlays, "overlay") |
|
for (x, y) in ordered: |
|
ET.SubElement(overlay, "point", type="Next", x=str(float(x)), y=str(float(y)), z="0.0") |
|
|
|
ET.SubElement(root, "ruler", |
|
startX=str(TL[0]), startY=str(TL[1]), |
|
stopX=str(BR[0]), stopY=str(BR[1]), value="100") |
|
|
|
tree = ET.ElementTree(root) |
|
tree.write(out_path, encoding="utf-8", xml_declaration=True) |
|
|
|
|
|
|
|
|
|
|
|
def predict_one(mockup_json, pers_img_path, model_ckpt, out_path="prediction.xml"): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
pers_img = Image.open(pers_img_path).convert("RGB") |
|
orig_w, orig_h = pers_img.size |
|
|
|
|
|
_, flat_norm = flat_corners_from_mockup(mockup_json) |
|
flat_in = torch.tensor(flat_norm.flatten(), dtype=torch.float32).unsqueeze(0).to(device) |
|
|
|
|
|
model = SimpleTransformer().to(device) |
|
state = torch.load(model_ckpt, map_location=device, weights_only=False) |
|
if "model_state" in state: |
|
model.load_state_dict(state["model_state"]) |
|
else: |
|
model.load_state_dict(state) |
|
model.eval() |
|
|
|
|
|
with torch.no_grad(): |
|
pred = model(flat_in) |
|
pred = pred.view(4, 2).cpu().numpy() |
|
|
|
|
|
pred_px = pred.copy() |
|
pred_px[:, 0] *= orig_w |
|
pred_px[:, 1] *= orig_h |
|
|
|
|
|
save_prediction_xml(pred_px, out_path, orig_w, orig_h) |
|
print(f"Saved prediction -> {out_path}") |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
mockup_json = "Transformer/test/100847_TD/front/LAS02/mockup.json" |
|
pers_img = "Transformer/test/100847_TD/front/LAS02/4BC13E58-1D8A-4E5D-8A40-C1F4B1248893_visual.jpg" |
|
model_ckpt = "Transformer/transformer_model.pth" |
|
predict_one(mockup_json, pers_img, model_ckpt, out_path="Transformer/Prediction/pred3.xml") |