Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor | |
from PIL import Image | |
import torch | |
import numpy as np | |
# Load processor | |
processor = SegformerImageProcessor(do_reduce_labels=False) | |
# Load pretrained SegFormer structure | |
model = SegformerForSemanticSegmentation.from_pretrained( | |
"nvidia/segformer-b0-finetuned-ade-512-512", | |
num_labels=7, | |
ignore_mismatched_sizes=True | |
) | |
# Load trained weights from file in same directory | |
model.load_state_dict(torch.load("trained_model.pt", map_location=torch.device("cpu"))) | |
model.eval() | |
# Prediction function | |
def segment_image(input_image): | |
inputs = processor(images=input_image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
pred_mask = torch.argmax(logits, dim=1)[0].cpu().numpy() | |
normalized_mask = (pred_mask * (255 // 7)).astype(np.uint8) # 7 classes | |
output_image = Image.fromarray(normalized_mask) | |
# Resize mask (3x) | |
scale_factor = 3 | |
new_size = (output_image.width * scale_factor, output_image.height * scale_factor) | |
bigger_output = output_image.resize(new_size, resample=Image.NEAREST) | |
return bigger_output | |
# Gradio Interface with submit button | |
demo = gr.Interface( | |
fn=segment_image, | |
inputs=gr.Image(type="pil", label="Upload Blood Smear Image"), | |
outputs=gr.Image(type="pil", label="Predicted Grayscale Mask"), | |
title="Malaria Blood Smear Segmentation (Custom SegFormer)", | |
description="Upload a blood smear image. This app uses a custom trained SegFormer model (7 malaria-specific classes) to segment it.", | |
examples=["1.png", "2.png", "3.png"], # examples in same directory | |
live=False | |
) | |
if __name__ == "__main__": | |
demo.launch() | |