File size: 20,605 Bytes
4a2da89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import streamlit as st
import requests
import firebase_admin
from firebase_admin import credentials, db, auth
from PIL import Image
import numpy as np
from geopy.geocoders import Nominatim
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input
import json

# Initialize Firebase
if not firebase_admin._apps:
    cred = credentials.Certificate("firebase_credentials.json")  
    firebase_admin.initialize_app(cred, {
        'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/'
    })

# Load MobileNetV2 pre-trained model
mobilenet_model = MobileNetV2(weights="imagenet")

# Function to classify the uploaded image using MobileNetV2
def classify_image_with_mobilenet(image):
    try:
        img = image.resize((224, 224))
        img_array = np.array(img)
        img_array = np.expand_dims(img_array, axis=0)
        img_array = preprocess_input(img_array)
        predictions = mobilenet_model.predict(img_array)
        labels = decode_predictions(predictions, top=5)[0]
        return {label[1]: float(label[2]) for label in labels}
    except Exception as e:
        st.error(f"Error during image classification: {e}")
        return {}

# Function to get user's location using geolocation API
def get_user_location():
    st.write("Fetching location, please allow location access in your browser.")
    geolocator = Nominatim(user_agent="binsight")
    try:
        ip_info = requests.get("https://ipinfo.io/json").json()
        loc = ip_info.get("loc", "").split(",")
        latitude, longitude = loc[0], loc[1] if len(loc) == 2 else (None, None)
        if latitude and longitude:
            address = geolocator.reverse(f"{latitude}, {longitude}").address
            return latitude, longitude, address
    except Exception as e:
        st.error(f"Error retrieving location: {e}")
    return None, None, None

# User Login
st.sidebar.header("User Login")
user_email = st.sidebar.text_input("Enter your email")
login_button = st.sidebar.button("Login")

if login_button:
    if user_email:
        st.session_state["user_email"] = user_email
        st.sidebar.success(f"Logged in as {user_email}")

if "user_email" not in st.session_state:
    st.warning("Please log in first.")
    st.stop()

# Get user location and display details
latitude, longitude, address = get_user_location()
if latitude and longitude:
    st.success(f"Location detected: {address}")
else:
    st.warning("Unable to fetch location, please ensure location access is enabled.")
    st.stop()

# Streamlit App
st.title("BinSight: Upload Dustbin Image")

uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"])
submit_button = st.button("Analyze and Upload")

if submit_button and uploaded_file:
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Image", use_container_width=True)

    classification_results = classify_image_with_mobilenet(image)
    
    if classification_results:
        db_ref = db.reference("dustbins")
        dustbin_data = {
            "user_email": st.session_state["user_email"],
            "latitude": latitude,
            "longitude": longitude,
            "address": address,
            "classification": classification_results,
            "allocated_truck": None,
            "status": "Pending"
        }
        db_ref.push(dustbin_data)
        st.success("Dustbin data uploaded successfully!")
        st.write(f"**Location:** {address}")
        st.write(f"**Latitude:** {latitude}, **Longitude:** {longitude}")
    else:
        st.error("Missing classification details. Cannot upload.")







# best with firebase but below code is not giving correct location of user.

# import streamlit as st
# import requests
# import firebase_admin
# from firebase_admin import credentials, db, auth
# from PIL import Image
# import numpy as np
# from geopy.geocoders import Nominatim
# from tensorflow.keras.applications import MobileNetV2
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input

# # Initialize Firebase
# if not firebase_admin._apps:
#     cred = credentials.Certificate("firebase_credentials.json")  
#     firebase_admin.initialize_app(cred, {
#         'databaseURL': 'https://binsight-beda0-default-rtdb.asia-southeast1.firebasedatabase.app/'
#     })

# # Load MobileNetV2 pre-trained model
# mobilenet_model = MobileNetV2(weights="imagenet")

# # Function to classify the uploaded image using MobileNetV2
# def classify_image_with_mobilenet(image):
#     try:
#         img = image.resize((224, 224))
#         img_array = np.array(img)
#         img_array = np.expand_dims(img_array, axis=0)
#         img_array = preprocess_input(img_array)
#         predictions = mobilenet_model.predict(img_array)
#         labels = decode_predictions(predictions, top=5)[0]
#         return {label[1]: float(label[2]) for label in labels}
#     except Exception as e:
#         st.error(f"Error during image classification: {e}")
#         return {}

# # Function to get user's location
# def get_user_location():
#     try:
#         ip_info = requests.get("https://ipinfo.io/json").json()
#         location = ip_info.get("loc", "").split(",")
#         latitude = location[0] if len(location) > 0 else None
#         longitude = location[1] if len(location) > 1 else None

#         if latitude and longitude:
#             geolocator = Nominatim(user_agent="binsight")
#             address = geolocator.reverse(f"{latitude}, {longitude}").address
#             return latitude, longitude, address
#         return None, None, None
#     except Exception as e:
#         st.error(f"Unable to get location: {e}")
#         return None, None, None

# # User Login
# st.sidebar.header("User Login")
# user_email = st.sidebar.text_input("Enter your email")
# login_button = st.sidebar.button("Login")

# if login_button:
#     if user_email:
#         st.session_state["user_email"] = user_email
#         st.sidebar.success(f"Logged in as {user_email}")

# if "user_email" not in st.session_state:
#     st.warning("Please log in first.")
#     st.stop()

# # Streamlit App
# st.title("BinSight: Upload Dustbin Image")

# uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"])
# submit_button = st.button("Analyze and Upload")

# if submit_button and uploaded_file:
#     image = Image.open(uploaded_file)
#     st.image(image, caption="Uploaded Image", use_container_width=True)

#     classification_results = classify_image_with_mobilenet(image)
#     latitude, longitude, address = get_user_location()

#     if latitude and longitude and classification_results:
#         db_ref = db.reference("dustbins")
#         dustbin_data = {
#             "user_email": st.session_state["user_email"],
#             "latitude": latitude,
#             "longitude": longitude,
#             "address": address,
#             "classification": classification_results,
#             "allocated_truck": None,
#             "status": "Pending"
#         }
#         db_ref.push(dustbin_data)
#         st.success("Dustbin data uploaded successfully!")
#     else:
#         st.error("Missing classification or location details. Cannot upload.")











# Below is the old version but it is without of firebase and here is the addition of gemini.

# import streamlit as st
# import os
# from PIL import Image
# import numpy as np
# from io import BytesIO
# from dotenv import load_dotenv
# from geopy.geocoders import Nominatim
# from tensorflow.keras.applications import MobileNetV2
# from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input
# import requests
# import google.generativeai as genai

# # Load environment variables
# load_dotenv()

# # Configure Generative AI
# genai.configure(api_key='AIzaSyBREh8Uei7uDCbzPaYW2WdalOdjVWcQLAM')

# # Load MobileNetV2 pre-trained model
# mobilenet_model = MobileNetV2(weights="imagenet")

# # Function to classify the uploaded image using MobileNetV2
# def classify_image_with_mobilenet(image):
#     try:
#         img = image.resize((224, 224))
#         img_array = np.array(img)
#         img_array = np.expand_dims(img_array, axis=0)
#         img_array = preprocess_input(img_array)
#         predictions = mobilenet_model.predict(img_array)
#         labels = decode_predictions(predictions, top=5)[0]
#         return {label[1]: float(label[2]) for label in labels}
#     except Exception as e:
#         st.error(f"Error during image classification: {e}")
#         return {}

# # Function to get user's location
# def get_user_location():
#     try:
#         ip_info = requests.get("https://ipinfo.io/json").json()
#         location = ip_info.get("loc", "").split(",")
#         latitude = location[0] if len(location) > 0 else None
#         longitude = location[1] if len(location) > 1 else None

#         if latitude and longitude:
#             geolocator = Nominatim(user_agent="binsight")
#             address = geolocator.reverse(f"{latitude}, {longitude}").address
#             return latitude, longitude, address
#         return None, None, None
#     except Exception as e:
#         st.error(f"Unable to get location: {e}")
#         return None, None, None

# # Function to get nearest municipal details with contact info
# def get_nearest_municipal_details(latitude, longitude):
#     try:
#         if latitude and longitude:
#             # Simulating municipal service retrieval
#             municipal_services = [
#                 {"latitude": "12.9716", "longitude": "77.5946", "office": "Bangalore Municipal Office", "phone": "+91-80-12345678"},
#                 {"latitude": "28.7041", "longitude": "77.1025", "office": "Delhi Municipal Office", "phone": "+91-11-98765432"},
#                 {"latitude": "19.0760", "longitude": "72.8777", "office": "Mumbai Municipal Office", "phone": "+91-22-22334455"},
#             ]

#             # Find the nearest municipal service (mock logic: matching first two decimal points)
#             for service in municipal_services:
#                 if str(latitude).startswith(service["latitude"][:5]) and str(longitude).startswith(service["longitude"][:5]):
#                     return f"""
#                     **Office**: {service['office']}  
#                     **Phone**: {service['phone']}  
#                     """
#             return "No nearby municipal office found. Please check manually."
#         else:
#             return "Location not available. Unable to fetch municipal details."
#     except Exception as e:
#         st.error(f"Unable to fetch municipal details: {e}")
#         return None

# # Function to interact with Generative AI
# def get_genai_response(classification_results, location):
#     try:
#         classification_summary = "\n".join([f"{label}: {score:.2f}" for label, score in classification_results.items()])
#         location_summary = f"""
#         Latitude: {location[0] if location[0] else 'N/A'}
#         Longitude: {location[1] if location[1] else 'N/A'}
#         Address: {location[2] if location[2] else 'N/A'}
#         """
#         prompt = f"""
#         ### You are an environmental expert. Analyze the following:
#         1. **Image Classification**:
#            - {classification_summary}
#         2. **Location**:
#            - {location_summary}

#         ### Output Required:
#         1. Detailed insights about the waste detected in the image.
#         2. Specific health risks associated with the detected waste type.
#         3. Precautions to mitigate these health risks.
#         4. Recommendations for proper disposal.
#         """
#         model = genai.GenerativeModel('gemini-pro')
#         response = model.generate_content(prompt)
#         return response
#     except Exception as e:
#         st.error(f"Error using Generative AI: {e}")
#         return None

# # Function to display Generative AI response
# def display_genai_response(response):
#     st.subheader("Detailed Analysis and Recommendations")
#     if response and response.candidates:
#         response_content = response.candidates[0].content.parts[0].text if response.candidates[0].content.parts else ""
#         st.write(response_content)
#     else:
#         st.write("No response received from Generative AI or quota exceeded.")

# # Streamlit App
# st.title("BinSight: AI-Powered Dustbin and Waste Analysis System")
# st.text("Upload a dustbin image and get AI-powered analysis of the waste and associated health recommendations.")

# uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"], help="Upload a clear image of a dustbin for analysis.")
# submit_button = st.button("Analyze Dustbin")

# if submit_button:
#     if uploaded_file is not None:
#         image = Image.open(uploaded_file)
#         st.image(image, caption="Uploaded Image", use_container_width =True)

#         # Classify the image using MobileNetV2
#         st.subheader("Image Classification")
#         classification_results = classify_image_with_mobilenet(image)
#         for label, score in classification_results.items():
#             st.write(f"- **{label}**: {score:.2f}")

#         # Get user location
#         location = get_user_location()
#         latitude, longitude, address = location

#         st.subheader("User Location")
#         st.write(f"Latitude: {latitude if latitude else 'N/A'}")
#         st.write(f"Longitude: {longitude if longitude else 'N/A'}")
#         st.write(f"Address: {address if address else 'N/A'}")

#         # Get nearest municipal details with contact info
#         st.subheader("Nearest Municipal Details")
#         municipal_details = get_nearest_municipal_details(latitude, longitude)
#         st.write(municipal_details)

#         # Generate detailed analysis with Generative AI
#         if classification_results:
#             response = get_genai_response(classification_results, location)
#             display_genai_response(response)
#     else:
#         st.write("Please upload an image for analysis.")











# # import streamlit as st
# # import os
# # from PIL import Image
# # import numpy as np
# # from io import BytesIO
# # from dotenv import load_dotenv
# # from geopy.geocoders import Nominatim
# # from tensorflow.keras.applications import MobileNetV2
# # from tensorflow.keras.applications.mobilenet_v2 import decode_predictions, preprocess_input
# # import requests
# # import google.generativeai as genai

# # # Load environment variables
# # load_dotenv()

# # # Configure Generative AI
# # genai.configure(api_key='AIzaSyBREh8Uei7uDCbzPaYW2WdalOdjVWcQLAM')

# # # Load MobileNetV2 pre-trained model
# # mobilenet_model = MobileNetV2(weights="imagenet")

# # # Function to classify the uploaded image using MobileNetV2
# # def classify_image_with_mobilenet(image):
# #     try:
# #         # Resize the image to the input size of MobileNetV2
# #         img = image.resize((224, 224))
# #         img_array = np.array(img)
# #         img_array = np.expand_dims(img_array, axis=0)
# #         img_array = preprocess_input(img_array)

# #         # Predict using the MobileNetV2 model
# #         predictions = mobilenet_model.predict(img_array)
# #         labels = decode_predictions(predictions, top=5)[0]
# #         return {label[1]: float(label[2]) for label in labels}
# #     except Exception as e:
# #         st.error(f"Error during image classification: {e}")
# #         return {}

# # # Function to get user's location
# # def get_user_location():
# #     try:
# #         # Fetch location using the IPInfo API
# #         ip_info = requests.get("https://ipinfo.io/json").json()
# #         location = ip_info.get("loc", "").split(",")
# #         latitude = location[0] if len(location) > 0 else None
# #         longitude = location[1] if len(location) > 1 else None

# #         if latitude and longitude:
# #             geolocator = Nominatim(user_agent="binsight")
# #             address = geolocator.reverse(f"{latitude}, {longitude}").address
# #             return latitude, longitude, address
# #         return None, None, None
# #     except Exception as e:
# #         st.error(f"Unable to get location: {e}")
# #         return None, None, None

# # # Function to get nearest municipal details
# # def get_nearest_municipal_details(latitude, longitude):
# #     try:
# #         if latitude and longitude:
# #             # Simulating municipal service retrieval
# #             return f"The nearest municipal office is at ({latitude}, {longitude}). Please contact your local authority for waste management services."
# #         else:
# #             return "Location not available. Unable to fetch municipal details."
# #     except Exception as e:
# #         st.error(f"Unable to fetch municipal details: {e}")
# #         return None

# # # Function to interact with Generative AI
# # def get_genai_response(classification_results, location):
# #     try:
# #         # Construct prompt for Generative AI
# #         classification_summary = "\n".join([f"{label}: {score:.2f}" for label, score in classification_results.items()])
# #         location_summary = f"""
# #         Latitude: {location[0] if location[0] else 'N/A'}
# #         Longitude: {location[1] if location[1] else 'N/A'}
# #         Address: {location[2] if location[2] else 'N/A'}
# #         """
# #         prompt = f"""
# #         ### You are an environmental expert. Analyze the following:
# #         1. **Image Classification**:
# #            - {classification_summary}
# #         2. **Location**:
# #            - {location_summary}

# #         ### Output Required:
# #         1. Detailed insights about the waste detected in the image.
# #         2. Specific health risks associated with the detected waste type.
# #         3. Precautions to mitigate these health risks.
# #         4. Recommendations for proper disposal.
# #         """

# #         model = genai.GenerativeModel('gemini-pro')
# #         response = model.generate_content(prompt)
# #         return response
# #     except Exception as e:
# #         st.error(f"Error using Generative AI: {e}")
# #         return None

# # # Function to display Generative AI response
# # def display_genai_response(response):
# #     st.subheader("Detailed Analysis and Recommendations")
# #     if response and response.candidates:
# #         response_content = response.candidates[0].content.parts[0].text if response.candidates[0].content.parts else ""
# #         st.write(response_content)
# #     else:
# #         st.write("No response received from Generative AI or quota exceeded.")

# # # Streamlit App
# # st.title("BinSight: AI-Powered Dustbin and Waste Analysis System")
# # st.text("Upload a dustbin image and get AI-powered analysis of the waste and associated health recommendations.")

# # uploaded_file = st.file_uploader("Upload an image of the dustbin", type=["jpg", "jpeg", "png"], help="Upload a clear image of a dustbin for analysis.")
# # submit_button = st.button("Analyze Dustbin")

# # if submit_button:
# #     if uploaded_file is not None:
# #         image = Image.open(uploaded_file)
# #         st.image(image, caption="Uploaded Image", use_column_width=True)

# #         # Classify the image using MobileNetV2
# #         st.subheader("Image Classification")
# #         classification_results = classify_image_with_mobilenet(image)
# #         for label, score in classification_results.items():
# #             st.write(f"- **{label}**: {score:.2f}")

# #         # Get user location
# #         location = get_user_location()
# #         latitude, longitude, address = location

# #         st.subheader("User Location")
# #         st.write(f"Latitude: {latitude if latitude else 'N/A'}")
# #         st.write(f"Longitude: {longitude if longitude else 'N/A'}")
# #         st.write(f"Address: {address if address else 'N/A'}")

# #         # Get nearest municipal details
# #         st.subheader("Nearest Municipal Details")
# #         municipal_details = get_nearest_municipal_details(latitude, longitude)
# #         st.write(municipal_details)

# #         # Generate detailed analysis with Generative AI
# #         if classification_results:
# #             response = get_genai_response(classification_results, location)
# #             display_genai_response(response)
# #     else:
# #         st.write("Please upload an image for analysis.")