Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,48 +2,56 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
# Removed Hugging Face Hub imports as they are not needed for the simplified leaderboard
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
CITATION_BUTTON_LABEL,
|
8 |
CITATION_BUTTON_TEXT,
|
9 |
-
EVALUATION_QUEUE_TEXT,
|
10 |
INTRODUCTION_TEXT,
|
11 |
LLM_BENCHMARKS_TEXT,
|
12 |
TITLE,
|
13 |
)
|
14 |
-
from src.display.css_html_js import custom_css
|
15 |
-
# Removed utils imports related to the old leaderboard
|
16 |
-
# from src.display.utils import (...)
|
17 |
from src.envs import REPO_ID # Keep if needed for restart_space or other functions
|
18 |
-
|
19 |
-
|
20 |
-
#
|
21 |
-
#
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# --- Elo Leaderboard Configuration ---
|
25 |
-
#
|
|
|
|
|
26 |
data = [
|
27 |
-
{'
|
28 |
-
{'
|
29 |
-
{'
|
30 |
-
|
31 |
-
{'
|
32 |
-
|
33 |
-
{'
|
34 |
-
|
35 |
-
{'model': 'gemini-2.0-flash', 'MLE-Lite_Elo': 847, 'Tabular_Elo': 923, 'NLP_Elo': 860, 'CV_Elo': 978, 'Overall': 895},
|
36 |
-
# Renamed 'Gemini-2.0-Pro' to match previous list - adjust if needed
|
37 |
-
{'model': 'gemini-2.0-pro', 'MLE-Lite_Elo': 1064, 'Tabular_Elo': 1139, 'NLP_Elo': 1028, 'CV_Elo': 973, 'Overall': 1054},
|
38 |
-
# Renamed 'Gemini-2.5-Pro' to match previous list - adjust if needed
|
39 |
-
{'model': 'gemini-2.5-pro', 'MLE-Lite_Elo': 1257, 'Tabular_Elo': 1150, 'NLP_Elo': 1266, 'CV_Elo': 1177, 'Overall': 1214},
|
40 |
]
|
41 |
|
42 |
# Create a master DataFrame
|
|
|
43 |
master_df = pd.DataFrame(data)
|
44 |
|
45 |
# Define categories for selection (user-facing)
|
46 |
-
CATEGORIES = ["MLE-Lite", "Tabular", "NLP", "CV"
|
47 |
DEFAULT_CATEGORY = "Overall" # Set a default category
|
48 |
|
49 |
# Map user-facing categories to DataFrame column names
|
@@ -58,33 +66,58 @@ category_to_column = {
|
|
58 |
# --- Helper function to update leaderboard ---
|
59 |
def update_leaderboard(category):
|
60 |
"""
|
61 |
-
Selects
|
62 |
-
|
63 |
"""
|
64 |
score_column = category_to_column.get(category)
|
65 |
if score_column is None or score_column not in master_df.columns:
|
66 |
-
# Fallback if category or column is invalid
|
67 |
print(f"Warning: Invalid category '{category}' or column '{score_column}'. Falling back to default.")
|
68 |
score_column = category_to_column[DEFAULT_CATEGORY]
|
69 |
if score_column not in master_df.columns: # Check fallback column too
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
#
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# Rename the score column to 'Elo Score' for consistent display
|
76 |
df.rename(columns={score_column: 'Elo Score'}, inplace=True)
|
77 |
|
78 |
-
#
|
79 |
-
|
|
|
|
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
|
84 |
return df
|
85 |
|
86 |
# --- Mock/Placeholder functions/data for other tabs ---
|
87 |
-
# (
|
88 |
print("Warning: Evaluation queue data fetching is disabled/mocked due to leaderboard changes.")
|
89 |
finished_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
|
90 |
running_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
|
@@ -94,38 +127,55 @@ EVAL_TYPES = ["str", "str", "str", "str"] # Define for the dataframe types
|
|
94 |
|
95 |
|
96 |
# --- Keep restart function if relevant ---
|
97 |
-
# (Same as previous version)
|
98 |
def restart_space():
|
|
|
99 |
print(f"Attempting to restart space: {REPO_ID}")
|
100 |
-
# Replace with your actual space restart mechanism if needed
|
101 |
|
102 |
# --- Gradio App Definition ---
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
with demo:
|
|
|
106 |
gr.HTML(TITLE)
|
|
|
107 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
108 |
|
109 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
110 |
-
with gr.TabItem("π
|
111 |
with gr.Column():
|
112 |
-
gr.Markdown("## Model Elo Rankings")
|
113 |
category_selector = gr.Radio(
|
114 |
choices=CATEGORIES,
|
115 |
-
label="Select Category
|
116 |
-
value=DEFAULT_CATEGORY,
|
117 |
interactive=True,
|
118 |
-
container=False,
|
119 |
)
|
120 |
leaderboard_df_component = gr.Dataframe(
|
121 |
# Initialize with sorted data for the default category
|
122 |
value=update_leaderboard(DEFAULT_CATEGORY),
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
interactive=False,
|
126 |
-
#
|
|
|
127 |
row_count=(len(master_df), "fixed"),
|
128 |
-
col_count=(
|
|
|
|
|
129 |
)
|
130 |
# Link the radio button change to the update function
|
131 |
category_selector.change(
|
@@ -134,20 +184,60 @@ with demo:
|
|
134 |
outputs=leaderboard_df_component
|
135 |
)
|
136 |
|
137 |
-
with gr.TabItem("π About", elem_id="llm-benchmark-tab-
|
138 |
-
|
139 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
# --- Keep scheduler if relevant ---
|
153 |
# scheduler = BackgroundScheduler()
|
@@ -155,4 +245,8 @@ with demo:
|
|
155 |
# scheduler.start()
|
156 |
|
157 |
# --- Launch the app ---
|
158 |
-
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
# Removed Hugging Face Hub imports as they are not needed for the simplified leaderboard
|
5 |
+
|
6 |
+
# --- Make sure these imports work relative to your file structure ---
|
7 |
+
# Option 1: If src is a directory in the same folder as your script:
|
8 |
+
from src.about import (
|
9 |
CITATION_BUTTON_LABEL,
|
10 |
CITATION_BUTTON_TEXT,
|
11 |
+
EVALUATION_QUEUE_TEXT, # Keep if used by commented-out submit tab
|
12 |
INTRODUCTION_TEXT,
|
13 |
LLM_BENCHMARKS_TEXT,
|
14 |
TITLE,
|
15 |
)
|
16 |
+
from src.display.css_html_js import custom_css
|
|
|
|
|
17 |
from src.envs import REPO_ID # Keep if needed for restart_space or other functions
|
18 |
+
from src.submission.submit import add_new_eval # Keep if using the submit tab
|
19 |
+
|
20 |
+
# Option 2: If you don't have these files, define placeholders (REMOVE THIS if using Option 1)
|
21 |
+
# print("Warning: Using placeholder values for src module imports.")
|
22 |
+
# CITATION_BUTTON_LABEL="Citation"
|
23 |
+
# CITATION_BUTTON_TEXT="Please cite us if you use this benchmark..."
|
24 |
+
# EVALUATION_QUEUE_TEXT="Current evaluation queue:"
|
25 |
+
# INTRODUCTION_TEXT="Welcome to the MLE-Dojo Benchmark Leaderboard."
|
26 |
+
# LLM_BENCHMARKS_TEXT="Information about the benchmarks..."
|
27 |
+
# TITLE="<h1>π MLE-Dojo Benchmark Leaderboard</h1>"
|
28 |
+
# custom_css=""
|
29 |
+
# REPO_ID="your/space-id" # Replace with actual ID if needed
|
30 |
+
# def add_new_eval(*args): return "Submission placeholder."
|
31 |
+
# --- End Placeholder Definitions ---
|
32 |
+
|
33 |
|
34 |
# --- Elo Leaderboard Configuration ---
|
35 |
+
# Enhanced data with Rank (placeholder), Organizer, License, and URL
|
36 |
+
# !!! IMPORTANT: Replace placeholder URLs with actual model/project pages. !!!
|
37 |
+
# Verify organizer and license information for accuracy.
|
38 |
data = [
|
39 |
+
{'model_name': 'gpt-4o-mini', 'url': 'https://openai.com/index/hello-gpt-4o/', 'organizer': 'OpenAI', 'license': 'Proprietary', 'MLE-Lite_Elo': 753, 'Tabular_Elo': 839, 'NLP_Elo': 758, 'CV_Elo': 754, 'Overall': 778},
|
40 |
+
{'model_name': 'gpt-4o', 'url': 'https://openai.com/index/hello-gpt-4o/', 'organizer': 'OpenAI', 'license': 'Proprietary', 'MLE-Lite_Elo': 830, 'Tabular_Elo': 861, 'NLP_Elo': 903, 'CV_Elo': 761, 'Overall': 841},
|
41 |
+
{'model_name': 'o3-mini', 'url': 'https://placeholder.url/o3-mini', 'organizer': 'Unknown', 'license': 'Unknown', 'MLE-Lite_Elo': 1108, 'Tabular_Elo': 1019, 'NLP_Elo': 1056, 'CV_Elo': 1207, 'Overall': 1096}, # Fill details later
|
42 |
+
{'model_name': 'deepseek-v3', 'url': 'https://deepseek.com/', 'organizer': 'DeepSeek AI', 'license': 'DeepSeek License', 'MLE-Lite_Elo': 1004, 'Tabular_Elo': 1015, 'NLP_Elo': 1028, 'CV_Elo': 1067, 'Overall': 1023},
|
43 |
+
{'model_name': 'deepseek-r1', 'url': 'https://deepseek.com/', 'organizer': 'DeepSeek AI', 'license': 'DeepSeek License', 'MLE-Lite_Elo': 1137, 'Tabular_Elo': 1053, 'NLP_Elo': 1103, 'CV_Elo': 1083, 'Overall': 1100},
|
44 |
+
{'model_name': 'gemini-2.0-flash', 'url': 'https://deepmind.google/technologies/gemini/flash/', 'organizer': 'Google', 'license': 'Proprietary (API)', 'MLE-Lite_Elo': 847, 'Tabular_Elo': 923, 'NLP_Elo': 860, 'CV_Elo': 978, 'Overall': 895},
|
45 |
+
{'model_name': 'gemini-2.0-pro', 'url': 'https://deepmind.google/technologies/gemini/#introduction', 'organizer': 'Google', 'license': 'Proprietary (API)', 'MLE-Lite_Elo': 1064, 'Tabular_Elo': 1139, 'NLP_Elo': 1028, 'CV_Elo': 973, 'Overall': 1054},
|
46 |
+
{'model_name': 'gemini-2.5-pro', 'url': 'https://deepmind.google/technologies/gemini/2-5-pro/', 'organizer': 'Google', 'license': 'Proprietary (API)', 'MLE-Lite_Elo': 1257, 'Tabular_Elo': 1150, 'NLP_Elo': 1266, 'CV_Elo': 1177, 'Overall': 1214},
|
|
|
|
|
|
|
|
|
|
|
47 |
]
|
48 |
|
49 |
# Create a master DataFrame
|
50 |
+
# Note: Columns 'organizer' and 'license' are created in lowercase here.
|
51 |
master_df = pd.DataFrame(data)
|
52 |
|
53 |
# Define categories for selection (user-facing)
|
54 |
+
CATEGORIES = ["Overall", "MLE-Lite", "Tabular", "NLP", "CV"] # Overall first
|
55 |
DEFAULT_CATEGORY = "Overall" # Set a default category
|
56 |
|
57 |
# Map user-facing categories to DataFrame column names
|
|
|
66 |
# --- Helper function to update leaderboard ---
|
67 |
def update_leaderboard(category):
|
68 |
"""
|
69 |
+
Selects relevant columns, sorts by the chosen category's Elo score,
|
70 |
+
adds Rank, formats model name as a link, and returns the DataFrame.
|
71 |
"""
|
72 |
score_column = category_to_column.get(category)
|
73 |
if score_column is None or score_column not in master_df.columns:
|
|
|
74 |
print(f"Warning: Invalid category '{category}' or column '{score_column}'. Falling back to default.")
|
75 |
score_column = category_to_column[DEFAULT_CATEGORY]
|
76 |
if score_column not in master_df.columns: # Check fallback column too
|
77 |
+
# Return empty df with correct columns if still invalid
|
78 |
+
# Use lowercase keys here consistent with master_df for the empty case
|
79 |
+
return pd.DataFrame({
|
80 |
+
"Rank": [],
|
81 |
+
"Model": [],
|
82 |
+
"organizer": [], # lowercase
|
83 |
+
"license": [], # lowercase
|
84 |
+
"Elo Score": []
|
85 |
+
})
|
86 |
+
|
87 |
+
# Select base columns + the score column for sorting
|
88 |
+
# Ensure 'organizer' and 'license' are selected correctly (lowercase)
|
89 |
+
cols_to_select = ['model_name', 'url', 'organizer', 'license', score_column]
|
90 |
+
df = master_df[cols_to_select].copy()
|
91 |
+
|
92 |
+
# Sort by the selected 'Elo Score' descending
|
93 |
+
df.sort_values(by=score_column, ascending=False, inplace=True)
|
94 |
+
|
95 |
+
# Add Rank based on the sorted order
|
96 |
+
df.reset_index(drop=True, inplace=True)
|
97 |
+
df.insert(0, 'Rank', df.index + 1)
|
98 |
|
99 |
+
# Format Model Name as HTML Hyperlink
|
100 |
+
# The resulting column name will be 'Model' (capitalized)
|
101 |
+
df['Model'] = df.apply(
|
102 |
+
lambda row: f"<a href='{row['url'] if pd.notna(row['url']) else '#'}' target='_blank' style='color: #007bff; text-decoration: none;'>{row['model_name']}</a>",
|
103 |
+
axis=1
|
104 |
+
)
|
105 |
|
106 |
# Rename the score column to 'Elo Score' for consistent display
|
107 |
df.rename(columns={score_column: 'Elo Score'}, inplace=True)
|
108 |
|
109 |
+
# Select and reorder columns for final display using the ACTUAL column names in df
|
110 |
+
# Use lowercase 'organizer' and 'license' here because they haven't been renamed.
|
111 |
+
final_columns = ["Rank", "Model", "organizer", "license", "Elo Score"]
|
112 |
+
df = df[final_columns]
|
113 |
|
114 |
+
# Note: The DataFrame returned now has columns:
|
115 |
+
# 'Rank', 'Model', 'organizer', 'license', 'Elo Score'
|
116 |
|
117 |
return df
|
118 |
|
119 |
# --- Mock/Placeholder functions/data for other tabs ---
|
120 |
+
# (If the Submit tab is used, ensure these variables are appropriately populated or handled)
|
121 |
print("Warning: Evaluation queue data fetching is disabled/mocked due to leaderboard changes.")
|
122 |
finished_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
|
123 |
running_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
|
|
|
127 |
|
128 |
|
129 |
# --- Keep restart function if relevant ---
|
|
|
130 |
def restart_space():
|
131 |
+
# Make sure REPO_ID is correctly defined/imported if this function is used
|
132 |
print(f"Attempting to restart space: {REPO_ID}")
|
133 |
+
# Replace with your actual space restart mechanism if needed (e.g., HfApi().restart_space(REPO_ID))
|
134 |
|
135 |
# --- Gradio App Definition ---
|
136 |
+
# Add custom CSS rules here or ensure custom_css is imported correctly
|
137 |
+
# Example CSS rules you might want in your custom_css:
|
138 |
+
# table { width: 100%; border-collapse: collapse; }
|
139 |
+
# th, td { padding: 8px 12px; border: 1px solid #ddd; text-align: left; white-space: normal; } /* Allow wrapping */
|
140 |
+
# th { background-color: #f2f2f2; font-weight: bold; }
|
141 |
+
# tr:nth-child(even) { background-color: #f9f9f9; }
|
142 |
+
# tr:hover { background-color: #e9e9e9; }
|
143 |
+
# td a { color: #007bff; text-decoration: none; }
|
144 |
+
# td a:hover { text-decoration: underline; }
|
145 |
+
|
146 |
+
# Use a theme for better default styling
|
147 |
+
demo = gr.Blocks(css=custom_css, theme=gr.themes.Soft())
|
148 |
|
149 |
with demo:
|
150 |
+
# Use the TITLE variable imported or defined above
|
151 |
gr.HTML(TITLE)
|
152 |
+
# Use the INTRODUCTION_TEXT variable imported or defined above
|
153 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
154 |
|
155 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
156 |
+
with gr.TabItem("π
MLE-Dojo Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
157 |
with gr.Column():
|
158 |
+
gr.Markdown("## Model Elo Rankings by Category")
|
159 |
category_selector = gr.Radio(
|
160 |
choices=CATEGORIES,
|
161 |
+
label="Select Category:",
|
162 |
+
value=DEFAULT_CATEGORY,
|
163 |
interactive=True,
|
|
|
164 |
)
|
165 |
leaderboard_df_component = gr.Dataframe(
|
166 |
# Initialize with sorted data for the default category
|
167 |
value=update_leaderboard(DEFAULT_CATEGORY),
|
168 |
+
# Headers for DISPLAY remain capitalized
|
169 |
+
headers=["Rank", "Model", "Organizer", "License", "Elo Score"],
|
170 |
+
# Datatype maps to the final df columns: Rank, Model, organizer, license, Elo Score
|
171 |
+
datatype=["number", "html", "str", "str", "number"],
|
172 |
interactive=False,
|
173 |
+
# --- FIX APPLIED: Removed unsupported 'height' argument ---
|
174 |
+
# row_count determines the number of rows to display
|
175 |
row_count=(len(master_df), "fixed"),
|
176 |
+
col_count=(5, "fixed"),
|
177 |
+
wrap=True, # Allow text wrapping
|
178 |
+
elem_id="leaderboard-table" # CSS hook for custom styling
|
179 |
)
|
180 |
# Link the radio button change to the update function
|
181 |
category_selector.change(
|
|
|
184 |
outputs=leaderboard_df_component
|
185 |
)
|
186 |
|
187 |
+
with gr.TabItem("π About", elem_id="llm-benchmark-tab-about", id=1):
|
188 |
+
# Use the LLM_BENCHMARKS_TEXT variable imported or defined above
|
189 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
190 |
|
191 |
+
# --- Submit Tab (Commented out as in original request) ---
|
192 |
+
# Make sure EVALUATION_QUEUE_TEXT and add_new_eval are imported/defined if uncommented
|
193 |
+
# with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-submit", id=2):
|
194 |
+
# with gr.Column():
|
195 |
+
# with gr.Row():
|
196 |
+
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") # Requires import/definition
|
197 |
+
# with gr.Column():
|
198 |
+
# with gr.Accordion(f"β
Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
|
199 |
+
# finished_eval_table = gr.components.Dataframe(
|
200 |
+
# value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5,
|
201 |
+
# )
|
202 |
+
# with gr.Accordion(f"π Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
|
203 |
+
# running_eval_table = gr.components.Dataframe(
|
204 |
+
# value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5,
|
205 |
+
# )
|
206 |
+
# with gr.Accordion(f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
|
207 |
+
# pending_eval_table = gr.components.Dataframe(
|
208 |
+
# value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5,
|
209 |
+
# )
|
210 |
+
# with gr.Row():
|
211 |
+
# gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
212 |
+
# with gr.Row():
|
213 |
+
# with gr.Column():
|
214 |
+
# model_name_textbox = gr.Textbox(label="Model name (on Hugging Face Hub)")
|
215 |
+
# revision_name_textbox = gr.Textbox(label="Revision / Commit Hash", placeholder="main")
|
216 |
+
# model_type = gr.Dropdown(choices=["Type A", "Type B", "Type C"], label="Model type", multiselect=False, value=None, interactive=True) # Example choices
|
217 |
+
# with gr.Column():
|
218 |
+
# precision = gr.Dropdown(choices=["float16", "bfloat16", "float32", "int8", "auto"], label="Precision", multiselect=False, value="auto", interactive=True)
|
219 |
+
# weight_type = gr.Dropdown(choices=["Original", "Adapter", "Delta"], label="Weights type", multiselect=False, value="Original", interactive=True)
|
220 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
221 |
+
# submit_button = gr.Button("Submit Eval")
|
222 |
+
# submission_result = gr.Markdown()
|
223 |
+
# # Ensure add_new_eval is correctly imported/defined and handles these inputs
|
224 |
+
# submit_button.click(
|
225 |
+
# add_new_eval, # Requires import/definition
|
226 |
+
# [ model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type, ],
|
227 |
+
# submission_result,
|
228 |
+
# )
|
229 |
+
|
230 |
+
|
231 |
+
# --- Citation Row (at the bottom, outside Tabs) ---
|
232 |
+
with gr.Accordion("π Citation", open=False):
|
233 |
+
# Use the CITATION_BUTTON_TEXT and CITATION_BUTTON_LABEL variables imported or defined above
|
234 |
+
citation_button = gr.Textbox(
|
235 |
+
value=CITATION_BUTTON_TEXT,
|
236 |
+
label=CITATION_BUTTON_LABEL,
|
237 |
+
lines=10,
|
238 |
+
elem_id="citation-button",
|
239 |
+
show_copy_button=True,
|
240 |
+
)
|
241 |
|
242 |
# --- Keep scheduler if relevant ---
|
243 |
# scheduler = BackgroundScheduler()
|
|
|
245 |
# scheduler.start()
|
246 |
|
247 |
# --- Launch the app ---
|
248 |
+
# Ensures the app launches only when the script is run directly
|
249 |
+
if __name__ == "__main__":
|
250 |
+
# Ensure you have installed necessary libraries: pip install gradio pandas apscheduler
|
251 |
+
# Make sure your src module files (about.py etc.) are accessible OR use the placeholder definitions above.
|
252 |
+
demo.launch()
|