Spaces:
Runtime error
Runtime error
File size: 20,890 Bytes
5e0b9df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# ------------------------------------------------------------------------
# HOTR official code : main.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import torch
import torch.nn.functional as F
import copy
import numpy as np
import itertools
from torch import nn
from hotr.util import box_ops
from hotr.util.misc import (accuracy, get_world_size, is_dist_avail_and_initialized)
class SetCriterion(nn.Module):
""" This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, num_actions=None, HOI_losses=None, HOI_matcher=None, args=None):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.losses = losses
self.eos_coef=eos_coef
self.HOI_losses = HOI_losses
self.HOI_matcher = HOI_matcher
self.use_consis=args.use_consis & len(args.augpath_name)>0
self.num_path = 1+len(args.augpath_name)
if args:
self.HOI_eos_coef = args.hoi_eos_coef
if args.dataset_file == 'vcoco':
self.invalid_ids = args.invalid_ids
self.valid_ids = np.concatenate((args.valid_ids,[-1]), axis=0) # no interaction
elif args.dataset_file == 'hico-det':
self.invalid_ids = []
self.valid_ids = list(range(num_actions)) + [-1]
# for targets
self.num_tgt_classes = len(args.valid_obj_ids)
tgt_empty_weight = torch.ones(self.num_tgt_classes + 1)
tgt_empty_weight[-1] = self.HOI_eos_coef
self.register_buffer('tgt_empty_weight', tgt_empty_weight)
self.dataset_file = args.dataset_file
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = eos_coef
self.register_buffer('empty_weight', empty_weight)
#######################################################################################################################
# * DETR Losses
#######################################################################################################################
def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device)
target_classes[idx] = target_classes_o
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {'loss_ce': loss_ce}
if log:
# TODO this should probably be a separate loss, not hacked in this one here
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
return losses
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
"""
pred_logits = outputs['pred_logits']
device = pred_logits.device
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
losses = {'cardinality_error': card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
assert 'pred_boxes' in outputs
idx = self._get_src_permutation_idx(indices)
src_boxes = outputs['pred_boxes'][idx]
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
losses = {}
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
box_ops.box_cxcywh_to_xyxy(src_boxes),
box_ops.box_cxcywh_to_xyxy(target_boxes)))
losses['loss_giou'] = loss_giou.sum() / num_boxes
return losses
#######################################################################################################################
# * HOTR Losses
#######################################################################################################################
# >>> HOI Losses 1 : HO Pointer
def loss_pair_labels(self, outputs, targets, hoi_indices, num_boxes,use_consis, log=False):
assert ('pred_hidx' in outputs and 'pred_oidx' in outputs)
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
nu,q,hd=outputs['pred_hidx'].shape
src_hidx = outputs['pred_hidx'].view(self.num_path,nu//self.num_path,q,-1).transpose(0,1).flatten(0,1)
src_oidx = outputs['pred_oidx'].view(self.num_path,nu//self.num_path,q,-1).transpose(0,1).flatten(0,1)
hoi_ind=list(itertools.chain.from_iterable(hoi_indices))
idx = self._get_src_permutation_idx(hoi_ind)
target_hidx_classes = torch.full(src_hidx.shape[:2], -1, dtype=torch.int64, device=src_hidx.device)
target_oidx_classes = torch.full(src_oidx.shape[:2], -1, dtype=torch.int64, device=src_oidx.device)
# H Pointer loss
target_classes_h = torch.cat([t["h_labels"][J] for t, hoi_indice in zip(targets, hoi_indices) for (_,J) in hoi_indice])
target_hidx_classes[idx] = target_classes_h
# O Pointer loss
target_classes_o = torch.cat([t["o_labels"][J] for t, hoi_indice in zip(targets, hoi_indices) for (_,J) in hoi_indice])
target_oidx_classes[idx] = target_classes_o
loss_h = F.cross_entropy(src_hidx.transpose(1, 2), target_hidx_classes, ignore_index=-1)
loss_o = F.cross_entropy(src_oidx.transpose(1, 2), target_oidx_classes, ignore_index=-1)
#Consistency loss
if use_consis:
consistency_idxs=[self._get_consistency_src_permutation_idx(hoi_indice) for hoi_indice in hoi_indices ]
src_hidx_inputs=[F.softmax(src_hidx.view(-1,self.num_path,q,hd)[i][consistency_idx[0]],-1) for i,consistency_idx in enumerate(consistency_idxs)]
src_hidx_targets=[F.softmax(src_hidx.view(-1,self.num_path,q,hd)[i][consistency_idx[1]],-1) for i,consistency_idx in enumerate(consistency_idxs)]
src_oidx_inputs=[F.softmax(src_oidx.view(-1,self.num_path,q,hd)[i][consistency_idx[0]],-1) for i,consistency_idx in enumerate(consistency_idxs)]
src_oidx_targets=[F.softmax(src_oidx.view(-1,self.num_path,q,hd)[i][consistency_idx[1]],-1) for i,consistency_idx in enumerate(consistency_idxs)]
loss_h_consistency=[0.5*(F.kl_div(src_hidx_input.log(),src_hidx_target.clone().detach(),reduction='batchmean')+F.kl_div(src_hidx_target.log(),src_hidx_input.clone().detach(),reduction='batchmean')) for src_hidx_input,src_hidx_target in zip(src_hidx_inputs,src_hidx_targets)]
loss_o_consistency=[0.5*(F.kl_div(src_oidx_input.log(),src_oidx_target.clone().detach(),reduction='batchmean')+F.kl_div(src_oidx_target.log(),src_oidx_input.clone().detach(),reduction='batchmean')) for src_oidx_input,src_oidx_target in zip(src_oidx_inputs,src_oidx_targets)]
loss_h_consistency=torch.mean(torch.stack(loss_h_consistency))
loss_o_consistency=torch.mean(torch.stack(loss_o_consistency))
losses = {'loss_hidx': loss_h, 'loss_oidx': loss_o,'loss_h_consistency':loss_h_consistency,'loss_o_consistency':loss_o_consistency}
else:
losses = {'loss_hidx': loss_h, 'loss_oidx': loss_o}
return losses
# >>> HOI Losses 2 : pair actions
def loss_pair_actions(self, outputs, targets, hoi_indices, num_boxes,use_consis):
assert 'pred_actions' in outputs
src_actions = outputs['pred_actions'].flatten(end_dim=1)
hoi_ind=list(itertools.chain.from_iterable(hoi_indices))
# idx = self._get_src_permutation_idx(hoi_indices)
idx = self._get_src_permutation_idx(hoi_ind)
# Construct Target --------------------------------------------------------------------------------------------------------------
target_classes_o = torch.cat([t["pair_actions"][J] for t, hoi_indice in zip(targets, hoi_indices) for (_,J) in hoi_indice])
target_classes = torch.full(src_actions.shape, 0, dtype=torch.float32, device=src_actions.device)
target_classes[..., -1] = 1 # the last index for no-interaction is '1' if a label exists
pos_classes = torch.full(target_classes[idx].shape, 0, dtype=torch.float32, device=src_actions.device) # else, the last index for no-interaction is '0'
pos_classes[:, :-1] = target_classes_o.float()
target_classes[idx] = pos_classes
# --------------------------------------------------------------------------------------------------------------------------------
# BCE Loss -----------------------------------------------------------------------------------------------------------------------
logits = src_actions.sigmoid()
loss_bce = F.binary_cross_entropy(logits[..., self.valid_ids], target_classes[..., self.valid_ids], reduction='none')
p_t = logits[..., self.valid_ids] * target_classes[..., self.valid_ids] + (1 - logits[..., self.valid_ids]) * (1 - target_classes[..., self.valid_ids])
loss_bce = ((1-p_t)**2 * loss_bce)
alpha_t = 0.25 * target_classes[..., self.valid_ids] + (1 - 0.25) * (1 - target_classes[..., self.valid_ids])
loss_focal = alpha_t * loss_bce
loss_act = loss_focal.sum() / max(target_classes[..., self.valid_ids[:-1]].sum(), 1)
# --------------------------------------------------------------------------------------------------------------------------------
#Consistency loss
if use_consis:
consistency_idxs=[self._get_consistency_src_permutation_idx(hoi_indice) for hoi_indice in hoi_indices]
src_action_inputs=[F.logsigmoid(outputs['pred_actions'][i][consistency_idx[0]]) for i,consistency_idx in enumerate(consistency_idxs)]
src_action_targets=[F.logsigmoid(outputs['pred_actions'][i][consistency_idx[1]]) for i,consistency_idx in enumerate(consistency_idxs)]
loss_action_consistency=[F.mse_loss(src_action_input,src_action_target) for src_action_input,src_action_target in zip(src_action_inputs,src_action_targets)]
loss_action_consistency=torch.mean(torch.stack(loss_action_consistency))
# import pdb;pdb.set_trace()
losses = {'loss_act': loss_act,'loss_act_consistency':loss_action_consistency}
else:
losses = {'loss_act': loss_act}
return losses
# HOI Losses 3 : action targets
def loss_pair_targets(self, outputs, targets, hoi_indices, num_interactions,use_consis, log=True):
assert 'pred_obj_logits' in outputs
src_logits = outputs['pred_obj_logits']
nu,q,hd=outputs['pred_obj_logits'].shape
hoi_ind=list(itertools.chain.from_iterable(hoi_indices))
idx = self._get_src_permutation_idx(hoi_ind)
target_classes_o = torch.cat([t['pair_targets'][J] for t, hoi_indice in zip(targets, hoi_indices) for (_,J) in hoi_indice])
pad_tgt = -1 # src_logits.shape[2]-1
target_classes = torch.full(src_logits.shape[:2], pad_tgt, dtype=torch.int64, device=src_logits.device)
target_classes[idx] = target_classes_o
loss_obj_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.tgt_empty_weight, ignore_index=-1)
#consistency
if use_consis:
consistency_idxs=[self._get_consistency_src_permutation_idx(hoi_indice) for hoi_indice in hoi_indices]
src_logits_inputs=[F.softmax(src_logits.view(-1,self.num_path,q,hd)[i][consistency_idx[0]],-1) for i,consistency_idx in enumerate(consistency_idxs)]
src_logits_targets=[F.softmax(src_logits.view(-1,self.num_path,q,hd)[i][consistency_idx[1]],-1) for i,consistency_idx in enumerate(consistency_idxs)]
loss_tgt_consistency=[0.5*(F.kl_div(src_logit_input.log(),src_logit_target.clone().detach(),reduction='batchmean')+F.kl_div(src_logit_target.log(),src_logit_input.clone().detach(),reduction='batchmean')) for src_logit_input,src_logit_target in zip(src_logits_inputs,src_logits_targets)]
loss_tgt_consistency=torch.mean(torch.stack(loss_tgt_consistency))
losses = {'loss_tgt': loss_obj_ce,"loss_tgt_label_consistency":loss_tgt_consistency}
else:
losses = {'loss_tgt': loss_obj_ce}
if log:
ignore_idx = (target_classes_o != -1)
losses['obj_class_error'] = 100 - accuracy(src_logits[idx][ignore_idx, :-1], target_classes_o[ignore_idx])[0]
# losses['obj_class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_consistency_src_permutation_idx(self, indices):
all_tgt=torch.cat([j for(_,j) in indices]).unique()
path_idxs=[torch.cat([torch.tensor([i]) for i,(_,t)in enumerate(indices) if (t==tgt).any()]) for tgt in all_tgt]
q_idxs=[torch.cat([s[t==tgt] for (s,t)in indices]) for tgt in all_tgt]
path_idxs=torch.cat([torch.combinations(path_idx) for path_idx in path_idxs if len(path_idx)>1])
q_idxs=torch.cat([torch.combinations(q_idx) for q_idx in q_idxs if len(q_idx)>1])
return (path_idxs[:,0],q_idxs[:,0]),(path_idxs[:,1],q_idxs[:,1])
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
# *****************************************************************************
# >>> DETR Losses
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
loss_map = {
'labels': self.loss_labels,
'cardinality': self.loss_cardinality,
'boxes': self.loss_boxes
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
# >>> HOTR Losses
def get_HOI_loss(self, loss, outputs, targets, indices, num_boxes,use_consis, **kwargs):
loss_map = {
'pair_labels': self.loss_pair_labels,
'pair_actions': self.loss_pair_actions
}
if self.dataset_file == 'hico-det': loss_map['pair_targets'] = self.loss_pair_targets
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, num_boxes,use_consis, **kwargs)
# *****************************************************************************
def forward(self, outputs, targets, log=False):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {k: v for k, v in outputs.items() if (k != 'aux_outputs' and k != 'hoi_aux_outputs')}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
if self.HOI_losses is not None:
input_targets = [copy.deepcopy(target) for target in targets]
hoi_indices, hoi_targets = self.HOI_matcher(outputs_without_aux, input_targets, indices, log)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_boxes = sum(len(t["labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_boxes)
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
if loss == 'masks':
# Intermediate masks losses are too costly to compute, we ignore them.
continue
kwargs = {}
if loss == 'labels':
# Logging is enabled only for the last layer
kwargs = {'log': False}
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
# HOI detection losses
if self.HOI_losses is not None:
for loss in self.HOI_losses:
losses.update(self.get_HOI_loss(loss, outputs, hoi_targets, hoi_indices, num_boxes,self.use_consis))
# if self.dataset_file == 'hico-det': losses['loss_oidx'] += losses['loss_tgt']
if 'hoi_aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['hoi_aux_outputs']):
input_targets = [copy.deepcopy(target) for target in targets]
hoi_indices, targets_for_aux = self.HOI_matcher(aux_outputs, input_targets, indices, log)
for loss in self.HOI_losses:
kwargs = {}
if loss == 'pair_targets': kwargs = {'log': False} # Logging is enabled only for the last layer
l_dict = self.get_HOI_loss(loss, aux_outputs, hoi_targets, hoi_indices, num_boxes,self.use_consis, **kwargs)
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
# if self.dataset_file == 'hico-det': losses[f'loss_oidx_{i}'] += losses[f'loss_tgt_{i}']
return losses |