File size: 31,306 Bytes
c5fd520 a090825 e334596 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 c5fd520 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 9fd80b9 e3e1e68 e334596 e3e1e68 e334596 9fd80b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import re
import random
import logging
from typing import Dict, List, Tuple, Optional
import numpy as np
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HealthAnalysisNLG:
def __init__(self):
"""Initialize the health analysis system with improved error handling and model loading"""
self.model = None
self.tokenizer = None
self._load_model()
# Enhanced response templates with more variety
self.response_templates = {
'bmi_assessment': {
'optimal': [
"Your BMI appears to be in a healthy range, which is excellent for your overall health.",
"Based on your height and weight, you're maintaining a healthy BMI that supports good metabolic function.",
"Your body mass index is within the optimal range, indicating good weight management.",
"Your current BMI suggests you're maintaining a healthy weight-to-height ratio."
],
'suboptimal': [
"Your BMI suggests there may be room for improvement in weight management.",
"Your current BMI indicates you might benefit from modest lifestyle adjustments.",
"Based on your measurements, focusing on healthy weight management could be beneficial.",
"Your BMI is slightly outside the optimal range, but manageable with lifestyle changes."
],
'concerning': [
"Your BMI indicates significant health risks that should be addressed promptly.",
"Your current BMI suggests urgent lifestyle changes may be needed for optimal health.",
"Based on your measurements, consulting with a healthcare provider is strongly recommended.",
"Your BMI falls into a range associated with increased health risks requiring attention."
]
},
'gut_health': {
'good': [
"Your dietary patterns suggest good intestinal health support.",
"Based on your nutrition intake, your gut microbiome appears well-supported.",
"Your current diet shows positive indicators for digestive wellness and gut barrier function.",
"Your eating patterns indicate healthy gut bacteria diversity support."
],
'moderate': [
"Your gut health indicators show mixed results with room for improvement.",
"Your digestive health could benefit from targeted dietary adjustments.",
"There are opportunities to enhance your intestinal health through nutrition optimization.",
"Your gut health profile suggests moderate support with potential for enhancement."
],
'poor': [
"Your dietary patterns suggest significant concerns for gut health and microbiome balance.",
"Your current nutrition may be negatively impacting digestive wellness and gut integrity.",
"Immediate attention to gut health through comprehensive dietary changes is recommended.",
"Your eating patterns indicate substantial risk to gut microbiome health."
]
},
'diet_balance': {
'excellent': [
"Your dietary balance shows excellent nutritional variety and micronutrient density.",
"You're maintaining an outstanding balance of macronutrients and essential vitamins.",
"Your eating patterns reflect excellent nutritional awareness and food quality choices.",
"Your diet demonstrates superior balance across all major food groups and nutrients."
],
'good': [
"Your diet shows good balance with minor opportunities for nutritional enhancement.",
"You're doing well with nutritional balance, with some areas to optimize for peak health.",
"Your dietary patterns are generally healthy with room for fine-tuning certain nutrients.",
"Your eating habits demonstrate good awareness with potential for strategic improvements."
],
'needs_improvement': [
"Your dietary balance could significantly benefit from comprehensive nutritional adjustments.",
"There are important nutritional gaps that should be addressed for optimal health outcomes.",
"Your current eating patterns may not be supporting your body's full nutritional needs.",
"Substantial improvements in dietary balance could dramatically enhance your health profile."
]
}
}
# Enhanced risk indicators with more comprehensive keywords
self.risk_indicators = {
'high_risk': [
'diabetes', 'hypertension', 'obesity', 'smoking', 'high cholesterol',
'heart disease', 'stroke', 'cancer', 'kidney disease', 'liver disease',
'metabolic syndrome', 'sleep apnea', 'chronic pain', 'depression'
],
'moderate_risk': [
'overweight', 'sedentary', 'stress', 'poor sleep', 'processed food',
'irregular meals', 'alcohol consumption', 'caffeine dependency',
'low fiber', 'high sodium', 'sugar addiction', 'inflammation'
],
'protective': [
'exercise', 'vegetables', 'fruits', 'supplements', 'meditation',
'good sleep', 'hydration', 'omega-3', 'probiotics', 'fiber',
'antioxidants', 'yoga', 'walking', 'strength training'
]
}
# BMI calculation and categories
self.bmi_categories = {
'underweight': (0, 18.5),
'normal': (18.5, 25),
'overweight': (25, 30),
'obese': (30, float('inf'))
}
def _load_model(self):
"""Load the model with proper error handling and fallback options"""
try:
# Try to load custom health analysis model
logger.info("Attempting to load custom health analysis model...")
self.tokenizer = AutoTokenizer.from_pretrained("Fahim18/health-analysis-biobert")
self.model = AutoModelForSequenceClassification.from_pretrained("Fahim18/health-analysis-biobert")
logger.info("Successfully loaded custom health analysis model")
except Exception as e:
logger.warning(f"Failed to load custom model: {e}")
try:
# Fallback to base BioBERT
logger.info("Loading base BioBERT model as fallback...")
self.tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
self.model = AutoModelForSequenceClassification.from_pretrained("dmis-lab/biobert-v1.1")
logger.info("Successfully loaded base BioBERT model")
except Exception as e2:
logger.error(f"Failed to load any model: {e2}")
raise RuntimeError("Unable to load any suitable model for health analysis")
def calculate_bmi(self, height_cm: float, weight_kg: float) -> Tuple[float, str]:
"""Calculate BMI and return category"""
if height_cm <= 0 or weight_kg <= 0:
return None, "invalid"
bmi = weight_kg / ((height_cm / 100) ** 2)
for category, (min_val, max_val) in self.bmi_categories.items():
if min_val <= bmi < max_val:
return round(bmi, 1), category
return round(bmi, 1), "unknown"
def extract_health_info(self, text: str) -> Dict:
"""Enhanced health information extraction with better pattern matching"""
text_lower = text.lower()
health_info = {
'age': None,
'height_cm': None,
'weight_kg': None,
'bmi': None,
'bmi_category': None,
'gender': None,
'medical_conditions': [],
'medications': [],
'diet_quality_indicators': [],
'lifestyle_factors': [],
'supplements': [],
'risk_score': 0
}
# Extract age with multiple patterns
age_patterns = [
r'(\d+)\s*(?:years?\s*old|year|yr|y\.o\.)',
r'age:?\s*(\d+)',
r'(\d+)\s*yr',
r'i\s*am\s*(\d+)'
]
for pattern in age_patterns:
age_match = re.search(pattern, text_lower)
if age_match:
health_info['age'] = int(age_match.group(1))
break
# Extract height (multiple units and formats)
height_patterns = [
r'(\d+(?:\.\d+)?)\s*cm',
r'(\d+)\s*feet?\s*(\d+)\s*inch',
r'(\d+)\'(\d+)\"',
r'height:?\s*(\d+(?:\.\d+)?)\s*cm'
]
for pattern in height_patterns:
height_match = re.search(pattern, text_lower)
if height_match:
if 'feet' in pattern or '\'' in pattern:
# Convert feet/inches to cm
feet = int(height_match.group(1))
inches = int(height_match.group(2)) if height_match.group(2) else 0
health_info['height_cm'] = round((feet * 12 + inches) * 2.54, 1)
else:
health_info['height_cm'] = float(height_match.group(1))
break
# Extract weight (multiple units)
weight_patterns = [
r'(\d+(?:\.\d+)?)\s*kg',
r'(\d+(?:\.\d+)?)\s*pound|lbs?',
r'weight:?\s*(\d+(?:\.\d+)?)\s*kg'
]
for pattern in weight_patterns:
weight_match = re.search(pattern, text_lower)
if weight_match:
weight = float(weight_match.group(1))
if 'pound' in pattern or 'lb' in pattern:
# Convert pounds to kg
health_info['weight_kg'] = round(weight * 0.453592, 1)
else:
health_info['weight_kg'] = weight
break
# Calculate BMI if height and weight are available
if health_info['height_cm'] and health_info['weight_kg']:
bmi, category = self.calculate_bmi(health_info['height_cm'], health_info['weight_kg'])
health_info['bmi'] = bmi
health_info['bmi_category'] = category
# Extract gender
gender_patterns = [
r'\b(male|female|man|woman)\b',
r'gender:?\s*(male|female|m|f)\b'
]
for pattern in gender_patterns:
gender_match = re.search(pattern, text_lower)
if gender_match:
gender = gender_match.group(1)
health_info['gender'] = 'male' if gender in ['male', 'man', 'm'] else 'female'
break
# Extract medical conditions, medications, supplements
self._extract_medical_info(text_lower, health_info)
# Calculate risk score
health_info['risk_score'] = self._calculate_risk_score(health_info, text_lower)
return health_info
def _extract_medical_info(self, text_lower: str, health_info: Dict):
"""Extract medical conditions, medications, and supplements"""
# Medical conditions
medical_conditions = [
'diabetes', 'hypertension', 'high blood pressure', 'heart disease',
'obesity', 'depression', 'anxiety', 'arthritis', 'asthma',
'high cholesterol', 'kidney disease', 'liver disease'
]
for condition in medical_conditions:
if condition in text_lower:
health_info['medical_conditions'].append(condition)
# Common medications
medications = [
'lisinopril', 'metformin', 'atorvastatin', 'amlodipine',
'losartan', 'hydrochlorothiazide', 'simvastatin', 'omeprazole'
]
for med in medications:
if med in text_lower:
health_info['medications'].append(med)
# Supplements
supplements = [
'vitamin d', 'vitamin b12', 'vitamin c', 'magnesium',
'probiotics', 'omega-3', 'fish oil', 'multivitamin',
'calcium', 'iron', 'zinc', 'biotin'
]
for supplement in supplements:
if supplement in text_lower:
health_info['supplements'].append(supplement)
def _calculate_risk_score(self, health_info: Dict, text_lower: str) -> int:
"""Calculate a composite risk score based on extracted information"""
score = 0
# Age factor
if health_info['age']:
if health_info['age'] > 65:
score += 3
elif health_info['age'] > 50:
score += 2
elif health_info['age'] > 30:
score += 1
# BMI factor
if health_info['bmi_category']:
if health_info['bmi_category'] in ['obese']:
score += 4
elif health_info['bmi_category'] in ['overweight']:
score += 2
elif health_info['bmi_category'] in ['underweight']:
score += 1
# Medical conditions
score += len(health_info['medical_conditions']) * 2
# Risk factors from text
for risk_factor in self.risk_indicators['high_risk']:
if risk_factor in text_lower:
score += 2
for risk_factor in self.risk_indicators['moderate_risk']:
if risk_factor in text_lower:
score += 1
# Protective factors (reduce score)
for protective_factor in self.risk_indicators['protective']:
if protective_factor in text_lower:
score = max(0, score - 1)
return min(score, 20) # Cap at 20
def generate_risk_assessment(self, probabilities: torch.Tensor, health_info: Dict) -> List[str]:
"""Generate detailed risk assessment based on model output and health info"""
assessment_parts = []
if len(probabilities) >= 3:
bmi_prob = probabilities[0].item()
gut_prob = probabilities[1].item()
diet_prob = probabilities[2].item()
else:
# Fallback if model output format is different
avg_prob = probabilities.mean().item()
bmi_prob = gut_prob = diet_prob = avg_prob
# Enhanced BMI assessment incorporating actual BMI if available
if health_info['bmi'] and health_info['bmi_category']:
if health_info['bmi_category'] == 'normal':
bmi_category = 'optimal'
elif health_info['bmi_category'] in ['overweight', 'underweight']:
bmi_category = 'suboptimal'
else:
bmi_category = 'concerning'
else:
# Use model probability
if bmi_prob > 0.7:
bmi_category = 'optimal'
elif bmi_prob > 0.4:
bmi_category = 'suboptimal'
else:
bmi_category = 'concerning'
assessment_parts.append(random.choice(self.response_templates['bmi_assessment'][bmi_category]))
# Gut Health Assessment
if gut_prob > 0.6:
gut_category = 'good'
elif gut_prob > 0.3:
gut_category = 'moderate'
else:
gut_category = 'poor'
assessment_parts.append(random.choice(self.response_templates['gut_health'][gut_category]))
# Diet Balance Assessment
if diet_prob > 0.7:
diet_category = 'excellent'
elif diet_prob > 0.4:
diet_category = 'good'
else:
diet_category = 'needs_improvement'
assessment_parts.append(random.choice(self.response_templates['diet_balance'][diet_category]))
return assessment_parts
def generate_personalized_recommendations(self, health_info: Dict, probabilities: torch.Tensor) -> List[str]:
"""Generate comprehensive personalized recommendations"""
recommendations = []
# Age-based recommendations
if health_info['age']:
if health_info['age'] > 65:
recommendations.extend([
"Regular comprehensive health screenings are crucial at your age.",
"Consider bone density testing and fall prevention strategies.",
"Prioritize balance and flexibility exercises alongside cardiovascular fitness."
])
elif health_info['age'] > 50:
recommendations.extend([
"Annual health screenings become increasingly important.",
"Focus on maintaining muscle mass through resistance training."
])
elif health_info['age'] > 30:
recommendations.append("This is an excellent time to establish healthy habits for long-term wellness.")
# BMI-specific recommendations
if health_info['bmi_category']:
if health_info['bmi_category'] == 'obese':
recommendations.extend([
"Consider working with a healthcare provider on a comprehensive weight management plan.",
"Focus on sustainable lifestyle changes rather than rapid weight loss."
])
elif health_info['bmi_category'] == 'overweight':
recommendations.append("Small, consistent changes in diet and exercise can help achieve a healthier weight.")
elif health_info['bmi_category'] == 'underweight':
recommendations.append("Consider consulting a nutritionist to safely increase muscle mass and overall weight.")
# Medical condition-specific recommendations
if 'diabetes' in health_info['medical_conditions']:
recommendations.extend([
"Regular blood glucose monitoring and A1C testing are essential.",
"Focus on complex carbohydrates and consistent meal timing."
])
if 'hypertension' in health_info['medical_conditions']:
recommendations.extend([
"Monitor blood pressure regularly and follow DASH diet principles.",
"Limit sodium intake and prioritize potassium-rich foods."
])
# Risk score-based recommendations
if health_info['risk_score'] > 10:
recommendations.append("Given multiple risk factors, working closely with healthcare providers is essential.")
elif health_info['risk_score'] > 5:
recommendations.append("Addressing current risk factors can significantly improve your long-term health outlook.")
# Diet and lifestyle recommendations
if len(probabilities) > 2 and probabilities[2].item() < 0.5:
recommendations.extend([
"Increase intake of colorful vegetables and fruits to at least 5 servings daily.",
"Reduce processed foods and added sugars for better metabolic health.",
"Consider meal planning to ensure consistent nutrition quality."
])
if len(probabilities) > 1 and probabilities[1].item() < 0.4:
recommendations.extend([
"Support gut health with prebiotic and probiotic foods.",
"Increase fiber intake gradually to improve digestive wellness."
])
# Supplement recommendations
if not health_info['supplements']:
recommendations.append("Consider discussing basic supplementation (Vitamin D, B12) with your healthcare provider.")
return recommendations[:8] # Limit to most important recommendations
def generate_overall_risk_summary(self, probabilities: torch.Tensor, health_info: Dict) -> str:
"""Generate comprehensive overall risk summary"""
if not probabilities.numel():
return "Unable to assess risk based on provided information."
# Use risk score if available, otherwise use model probabilities
if health_info['risk_score']:
risk_score = health_info['risk_score']
if risk_score <= 3:
risk_level = "low"
summary = "Your overall health profile suggests you're managing well with low risk factors. Continue maintaining your current healthy practices while staying vigilant about preventive care."
elif risk_score <= 8:
risk_level = "moderate"
summary = "Your health profile shows both strengths and areas for improvement. With targeted lifestyle modifications, you can significantly enhance your wellness and reduce future health risks."
else:
risk_level = "elevated"
summary = "Your health indicators suggest several areas requiring immediate attention. Consider developing a comprehensive wellness plan with healthcare professionals to address multiple risk factors."
else:
# Fallback to model probabilities
avg_score = probabilities.mean().item()
if avg_score > 0.7:
risk_level = "low"
summary = "Your overall health indicators suggest you're on a positive trajectory. Continue maintaining your current healthy practices."
elif avg_score > 0.4:
risk_level = "moderate"
summary = "Your health profile shows both strengths and areas for improvement. With some targeted changes, you can significantly enhance your wellness."
else:
risk_level = "elevated"
summary = "Your health indicators suggest several areas that need attention. Consider consulting with healthcare professionals for a comprehensive wellness plan."
return f"**Overall Risk Level: {risk_level.upper()}**\n\n{summary}"
def process_outputs(self, outputs, text_input: str) -> str:
"""Enhanced output processing with comprehensive analysis"""
try:
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
# Extract detailed health information
health_info = self.extract_health_info(text_input)
# Generate assessment components
risk_assessments = self.generate_risk_assessment(probabilities[0], health_info)
recommendations = self.generate_personalized_recommendations(health_info, probabilities[0])
overall_summary = self.generate_overall_risk_summary(probabilities[0], health_info)
# Construct comprehensive response
response_parts = [
"# π₯ Comprehensive Health Analysis\n",
overall_summary,
"\n## π Health Profile Summary"
]
# Add extracted health information
if health_info['age']:
response_parts.append(f"**Age:** {health_info['age']} years")
if health_info['bmi']:
response_parts.append(f"**BMI:** {health_info['bmi']} ({health_info['bmi_category'].title()})")
if health_info['medical_conditions']:
response_parts.append(f"**Medical Conditions:** {', '.join(health_info['medical_conditions']).title()}")
if health_info['medications']:
response_parts.append(f"**Medications:** {', '.join(health_info['medications']).title()}")
response_parts.append("\n## π Detailed Health Assessment")
for i, assessment in enumerate(risk_assessments, 1):
response_parts.append(f"**{i}.** {assessment}")
if recommendations:
response_parts.append("\n## π‘ Personalized Recommendations")
for i, rec in enumerate(recommendations, 1):
response_parts.append(f"**{i}.** {rec}")
# Technical scores
response_parts.append("\n## π Health Scores")
if len(probabilities[0]) >= 3:
response_parts.extend([
f"- **BMI Health Score:** {probabilities[0][0].item()*100:.1f}%",
f"- **Gut Health Score:** {probabilities[0][1].item()*100:.1f}%",
f"- **Diet Balance Score:** {probabilities[0][2].item()*100:.1f}%"
])
if health_info['risk_score']:
response_parts.append(f"- **Overall Risk Score:** {health_info['risk_score']}/20")
response_parts.extend([
"\n---",
"β οΈ **Important Disclaimer:** This analysis is for informational purposes only and should not replace professional medical advice. Always consult with qualified healthcare providers for medical decisions."
])
return "\n".join(response_parts)
except Exception as e:
logger.error(f"Error in process_outputs: {e}")
return f"An error occurred during analysis: {str(e)}\nPlease check your input and try again."
def create_health_analyzer():
"""Factory function to create health analyzer with error handling"""
try:
return HealthAnalysisNLG()
except Exception as e:
logger.error(f"Failed to initialize health analyzer: {e}")
return None
# Initialize the health analysis system
health_analyzer = create_health_analyzer()
def predict(text_input: str) -> str:
"""Main prediction function with enhanced error handling"""
if not text_input or not text_input.strip():
return "Please provide your health information for analysis. Include details like age, height, weight, medical conditions, diet, exercise habits, etc."
if not health_analyzer or not health_analyzer.model:
return "β **System Error:** Health analysis model is not available. Please try again later."
try:
# Tokenize and predict with proper error handling
inputs = health_analyzer.tokenizer(
text_input,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
with torch.no_grad():
outputs = health_analyzer.model(**inputs)
# Generate comprehensive response
return health_analyzer.process_outputs(outputs, text_input)
except Exception as e:
logger.error(f"Prediction error: {e}")
return f"β **Analysis Error:** {str(e)}\n\nPlease check your input format and try again. Ensure you include relevant health information like age, medical conditions, lifestyle factors, etc."
def create_interface():
"""Create an enhanced Gradio interface with better styling and examples"""
enhanced_examples = [
[
"I am a 32-year-old male, 175cm tall, weighing 72kg. I have hypertension and high cholesterol. "
"I take Lisinopril daily. My diet includes 2 servings of fruits and 3 servings of vegetables daily, "
"with 1 serving of red meat per week and about 20g of sugar daily. I exercise 4 hours weekly, "
"sleep 7 hours nightly, and have moderate stress levels. I take probiotics, Vitamin D, B12, and Magnesium supplements."
],
[
"45-year-old female, 165cm, 78kg, diabetes type 2, taking metformin. Sedentary job, high stress, "
"poor diet with lots of processed foods, irregular meals. Sleep 5-6 hours nightly. No supplements."
],
[
"28-year-old female athlete, 170cm, 60kg, excellent physical condition, trains 6 days per week. "
"Balanced Mediterranean diet, 8 hours sleep, low stress. Takes multivitamins and protein supplements."
],
[
"67-year-old male, 180cm, 85kg, heart disease, arthritis, taking atorvastatin and ibuprofen. "
"Limited mobility, walks 30 minutes daily. Diet includes fish twice weekly, vegetables daily, some processed foods."
]
]
interface = gr.Interface(
fn=predict,
inputs=gr.Textbox(
label="π©Ί Enter Your Comprehensive Health Information",
placeholder="Provide detailed information including: age, height, weight, gender, medical conditions, medications, diet details, exercise habits, sleep patterns, stress levels, supplements, etc. The more detailed your input, the more accurate and personalized your analysis will be.",
lines=6,
max_lines=10
),
outputs=gr.Textbox(
label="π Comprehensive Health Analysis & Personalized Recommendations",
lines=20,
max_lines=30
),
title="π₯ AI-Powered Comprehensive Health Risk Assessment",
description="""
**Welcome to your personalized health analysis system!**
This advanced AI tool analyzes your health information using BioBERT (a specialized medical AI model) to provide:
- β
Comprehensive health risk assessment
- π BMI analysis and categorization
- π¦ Gut health evaluation
- π₯ Dietary balance assessment
- π‘ Personalized health recommendations
- π Detailed health scores and metrics
**For best results, include:** demographics, medical history, current medications, detailed diet information, exercise habits, sleep patterns, stress levels, and any supplements you take.
""",
examples=enhanced_examples,
theme=gr.themes.Soft(),
css="""
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.gr-button-primary {
background: linear-gradient(45deg, #2196F3, #21CBF3);
border: none;
}
.gr-box {
border-radius: 10px;
}
""",
allow_flagging="never"
)
return interface
# Main execution
if __name__ == "__main__":
if health_analyzer:
interface = create_interface()
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
else:
logger.error("Failed to initialize health analyzer. Cannot start interface.")
print("β Failed to initialize the health analysis system. Please check the logs for details.") |