File size: 31,306 Bytes
c5fd520
a090825
e334596
e3e1e68
 
9fd80b9
 
 
 
 
 
 
e3e1e68
 
 
9fd80b9
 
 
 
e3e1e68
9fd80b9
e3e1e68
 
 
 
9fd80b9
 
 
e3e1e68
 
 
9fd80b9
 
 
e3e1e68
 
 
9fd80b9
 
 
e3e1e68
 
 
 
 
9fd80b9
 
 
e3e1e68
 
 
9fd80b9
 
 
e3e1e68
 
9fd80b9
 
 
 
e3e1e68
 
 
 
9fd80b9
 
 
 
e3e1e68
 
9fd80b9
 
 
 
e3e1e68
 
9fd80b9
 
 
 
e3e1e68
 
 
 
9fd80b9
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
9fd80b9
 
e3e1e68
 
 
 
9fd80b9
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
 
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
 
 
9fd80b9
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
 
 
 
 
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
 
9fd80b9
 
e3e1e68
 
 
 
9fd80b9
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
 
9fd80b9
 
 
e3e1e68
9fd80b9
 
e3e1e68
9fd80b9
 
 
 
e3e1e68
9fd80b9
 
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
e3e1e68
9fd80b9
 
 
e3e1e68
9fd80b9
 
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
9fd80b9
c5fd520
9fd80b9
 
 
 
 
 
 
e3e1e68
 
9fd80b9
 
 
 
 
 
 
 
e3e1e68
 
 
 
9fd80b9
e3e1e68
 
 
9fd80b9
 
e3e1e68
 
9fd80b9
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
 
 
 
9fd80b9
 
 
 
e3e1e68
 
9fd80b9
 
 
e3e1e68
9fd80b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e1e68
 
 
e334596
e3e1e68
e334596
9fd80b9
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import re
import random
import logging
from typing import Dict, List, Tuple, Optional
import numpy as np

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class HealthAnalysisNLG:
    def __init__(self):
        """Initialize the health analysis system with improved error handling and model loading"""
        self.model = None
        self.tokenizer = None
        self._load_model()
        
        # Enhanced response templates with more variety
        self.response_templates = {
            'bmi_assessment': {
                'optimal': [
                    "Your BMI appears to be in a healthy range, which is excellent for your overall health.",
                    "Based on your height and weight, you're maintaining a healthy BMI that supports good metabolic function.",
                    "Your body mass index is within the optimal range, indicating good weight management.",
                    "Your current BMI suggests you're maintaining a healthy weight-to-height ratio."
                ],
                'suboptimal': [
                    "Your BMI suggests there may be room for improvement in weight management.",
                    "Your current BMI indicates you might benefit from modest lifestyle adjustments.",
                    "Based on your measurements, focusing on healthy weight management could be beneficial.",
                    "Your BMI is slightly outside the optimal range, but manageable with lifestyle changes."
                ],
                'concerning': [
                    "Your BMI indicates significant health risks that should be addressed promptly.",
                    "Your current BMI suggests urgent lifestyle changes may be needed for optimal health.",
                    "Based on your measurements, consulting with a healthcare provider is strongly recommended.",
                    "Your BMI falls into a range associated with increased health risks requiring attention."
                ]
            },
            'gut_health': {
                'good': [
                    "Your dietary patterns suggest good intestinal health support.",
                    "Based on your nutrition intake, your gut microbiome appears well-supported.",
                    "Your current diet shows positive indicators for digestive wellness and gut barrier function.",
                    "Your eating patterns indicate healthy gut bacteria diversity support."
                ],
                'moderate': [
                    "Your gut health indicators show mixed results with room for improvement.",
                    "Your digestive health could benefit from targeted dietary adjustments.",
                    "There are opportunities to enhance your intestinal health through nutrition optimization.",
                    "Your gut health profile suggests moderate support with potential for enhancement."
                ],
                'poor': [
                    "Your dietary patterns suggest significant concerns for gut health and microbiome balance.",
                    "Your current nutrition may be negatively impacting digestive wellness and gut integrity.",
                    "Immediate attention to gut health through comprehensive dietary changes is recommended.",
                    "Your eating patterns indicate substantial risk to gut microbiome health."
                ]
            },
            'diet_balance': {
                'excellent': [
                    "Your dietary balance shows excellent nutritional variety and micronutrient density.",
                    "You're maintaining an outstanding balance of macronutrients and essential vitamins.",
                    "Your eating patterns reflect excellent nutritional awareness and food quality choices.",
                    "Your diet demonstrates superior balance across all major food groups and nutrients."
                ],
                'good': [
                    "Your diet shows good balance with minor opportunities for nutritional enhancement.",
                    "You're doing well with nutritional balance, with some areas to optimize for peak health.",
                    "Your dietary patterns are generally healthy with room for fine-tuning certain nutrients.",
                    "Your eating habits demonstrate good awareness with potential for strategic improvements."
                ],
                'needs_improvement': [
                    "Your dietary balance could significantly benefit from comprehensive nutritional adjustments.",
                    "There are important nutritional gaps that should be addressed for optimal health outcomes.",
                    "Your current eating patterns may not be supporting your body's full nutritional needs.",
                    "Substantial improvements in dietary balance could dramatically enhance your health profile."
                ]
            }
        }
        
        # Enhanced risk indicators with more comprehensive keywords
        self.risk_indicators = {
            'high_risk': [
                'diabetes', 'hypertension', 'obesity', 'smoking', 'high cholesterol', 
                'heart disease', 'stroke', 'cancer', 'kidney disease', 'liver disease',
                'metabolic syndrome', 'sleep apnea', 'chronic pain', 'depression'
            ],
            'moderate_risk': [
                'overweight', 'sedentary', 'stress', 'poor sleep', 'processed food',
                'irregular meals', 'alcohol consumption', 'caffeine dependency',
                'low fiber', 'high sodium', 'sugar addiction', 'inflammation'
            ],
            'protective': [
                'exercise', 'vegetables', 'fruits', 'supplements', 'meditation', 
                'good sleep', 'hydration', 'omega-3', 'probiotics', 'fiber',
                'antioxidants', 'yoga', 'walking', 'strength training'
            ]
        }
        
        # BMI calculation and categories
        self.bmi_categories = {
            'underweight': (0, 18.5),
            'normal': (18.5, 25),
            'overweight': (25, 30),
            'obese': (30, float('inf'))
        }

    def _load_model(self):
        """Load the model with proper error handling and fallback options"""
        try:
            # Try to load custom health analysis model
            logger.info("Attempting to load custom health analysis model...")
            self.tokenizer = AutoTokenizer.from_pretrained("Fahim18/health-analysis-biobert")
            self.model = AutoModelForSequenceClassification.from_pretrained("Fahim18/health-analysis-biobert")
            logger.info("Successfully loaded custom health analysis model")
        except Exception as e:
            logger.warning(f"Failed to load custom model: {e}")
            try:
                # Fallback to base BioBERT
                logger.info("Loading base BioBERT model as fallback...")
                self.tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
                self.model = AutoModelForSequenceClassification.from_pretrained("dmis-lab/biobert-v1.1")
                logger.info("Successfully loaded base BioBERT model")
            except Exception as e2:
                logger.error(f"Failed to load any model: {e2}")
                raise RuntimeError("Unable to load any suitable model for health analysis")

    def calculate_bmi(self, height_cm: float, weight_kg: float) -> Tuple[float, str]:
        """Calculate BMI and return category"""
        if height_cm <= 0 or weight_kg <= 0:
            return None, "invalid"
        
        bmi = weight_kg / ((height_cm / 100) ** 2)
        
        for category, (min_val, max_val) in self.bmi_categories.items():
            if min_val <= bmi < max_val:
                return round(bmi, 1), category
        
        return round(bmi, 1), "unknown"

    def extract_health_info(self, text: str) -> Dict:
        """Enhanced health information extraction with better pattern matching"""
        text_lower = text.lower()
        
        health_info = {
            'age': None,
            'height_cm': None,
            'weight_kg': None,
            'bmi': None,
            'bmi_category': None,
            'gender': None,
            'medical_conditions': [],
            'medications': [],
            'diet_quality_indicators': [],
            'lifestyle_factors': [],
            'supplements': [],
            'risk_score': 0
        }
        
        # Extract age with multiple patterns
        age_patterns = [
            r'(\d+)\s*(?:years?\s*old|year|yr|y\.o\.)',
            r'age:?\s*(\d+)',
            r'(\d+)\s*yr',
            r'i\s*am\s*(\d+)'
        ]
        
        for pattern in age_patterns:
            age_match = re.search(pattern, text_lower)
            if age_match:
                health_info['age'] = int(age_match.group(1))
                break
        
        # Extract height (multiple units and formats)
        height_patterns = [
            r'(\d+(?:\.\d+)?)\s*cm',
            r'(\d+)\s*feet?\s*(\d+)\s*inch',
            r'(\d+)\'(\d+)\"',
            r'height:?\s*(\d+(?:\.\d+)?)\s*cm'
        ]
        
        for pattern in height_patterns:
            height_match = re.search(pattern, text_lower)
            if height_match:
                if 'feet' in pattern or '\'' in pattern:
                    # Convert feet/inches to cm
                    feet = int(height_match.group(1))
                    inches = int(height_match.group(2)) if height_match.group(2) else 0
                    health_info['height_cm'] = round((feet * 12 + inches) * 2.54, 1)
                else:
                    health_info['height_cm'] = float(height_match.group(1))
                break
        
        # Extract weight (multiple units)
        weight_patterns = [
            r'(\d+(?:\.\d+)?)\s*kg',
            r'(\d+(?:\.\d+)?)\s*pound|lbs?',
            r'weight:?\s*(\d+(?:\.\d+)?)\s*kg'
        ]
        
        for pattern in weight_patterns:
            weight_match = re.search(pattern, text_lower)
            if weight_match:
                weight = float(weight_match.group(1))
                if 'pound' in pattern or 'lb' in pattern:
                    # Convert pounds to kg
                    health_info['weight_kg'] = round(weight * 0.453592, 1)
                else:
                    health_info['weight_kg'] = weight
                break
        
        # Calculate BMI if height and weight are available
        if health_info['height_cm'] and health_info['weight_kg']:
            bmi, category = self.calculate_bmi(health_info['height_cm'], health_info['weight_kg'])
            health_info['bmi'] = bmi
            health_info['bmi_category'] = category
        
        # Extract gender
        gender_patterns = [
            r'\b(male|female|man|woman)\b',
            r'gender:?\s*(male|female|m|f)\b'
        ]
        
        for pattern in gender_patterns:
            gender_match = re.search(pattern, text_lower)
            if gender_match:
                gender = gender_match.group(1)
                health_info['gender'] = 'male' if gender in ['male', 'man', 'm'] else 'female'
                break
        
        # Extract medical conditions, medications, supplements
        self._extract_medical_info(text_lower, health_info)
        
        # Calculate risk score
        health_info['risk_score'] = self._calculate_risk_score(health_info, text_lower)
        
        return health_info

    def _extract_medical_info(self, text_lower: str, health_info: Dict):
        """Extract medical conditions, medications, and supplements"""
        # Medical conditions
        medical_conditions = [
            'diabetes', 'hypertension', 'high blood pressure', 'heart disease',
            'obesity', 'depression', 'anxiety', 'arthritis', 'asthma',
            'high cholesterol', 'kidney disease', 'liver disease'
        ]
        
        for condition in medical_conditions:
            if condition in text_lower:
                health_info['medical_conditions'].append(condition)
        
        # Common medications
        medications = [
            'lisinopril', 'metformin', 'atorvastatin', 'amlodipine',
            'losartan', 'hydrochlorothiazide', 'simvastatin', 'omeprazole'
        ]
        
        for med in medications:
            if med in text_lower:
                health_info['medications'].append(med)
        
        # Supplements
        supplements = [
            'vitamin d', 'vitamin b12', 'vitamin c', 'magnesium',
            'probiotics', 'omega-3', 'fish oil', 'multivitamin',
            'calcium', 'iron', 'zinc', 'biotin'
        ]
        
        for supplement in supplements:
            if supplement in text_lower:
                health_info['supplements'].append(supplement)

    def _calculate_risk_score(self, health_info: Dict, text_lower: str) -> int:
        """Calculate a composite risk score based on extracted information"""
        score = 0
        
        # Age factor
        if health_info['age']:
            if health_info['age'] > 65:
                score += 3
            elif health_info['age'] > 50:
                score += 2
            elif health_info['age'] > 30:
                score += 1
        
        # BMI factor
        if health_info['bmi_category']:
            if health_info['bmi_category'] in ['obese']:
                score += 4
            elif health_info['bmi_category'] in ['overweight']:
                score += 2
            elif health_info['bmi_category'] in ['underweight']:
                score += 1
        
        # Medical conditions
        score += len(health_info['medical_conditions']) * 2
        
        # Risk factors from text
        for risk_factor in self.risk_indicators['high_risk']:
            if risk_factor in text_lower:
                score += 2
        
        for risk_factor in self.risk_indicators['moderate_risk']:
            if risk_factor in text_lower:
                score += 1
        
        # Protective factors (reduce score)
        for protective_factor in self.risk_indicators['protective']:
            if protective_factor in text_lower:
                score = max(0, score - 1)
        
        return min(score, 20)  # Cap at 20

    def generate_risk_assessment(self, probabilities: torch.Tensor, health_info: Dict) -> List[str]:
        """Generate detailed risk assessment based on model output and health info"""
        assessment_parts = []
        
        if len(probabilities) >= 3:
            bmi_prob = probabilities[0].item()
            gut_prob = probabilities[1].item()
            diet_prob = probabilities[2].item()
        else:
            # Fallback if model output format is different
            avg_prob = probabilities.mean().item()
            bmi_prob = gut_prob = diet_prob = avg_prob
        
        # Enhanced BMI assessment incorporating actual BMI if available
        if health_info['bmi'] and health_info['bmi_category']:
            if health_info['bmi_category'] == 'normal':
                bmi_category = 'optimal'
            elif health_info['bmi_category'] in ['overweight', 'underweight']:
                bmi_category = 'suboptimal'
            else:
                bmi_category = 'concerning'
        else:
            # Use model probability
            if bmi_prob > 0.7:
                bmi_category = 'optimal'
            elif bmi_prob > 0.4:
                bmi_category = 'suboptimal'
            else:
                bmi_category = 'concerning'
        
        assessment_parts.append(random.choice(self.response_templates['bmi_assessment'][bmi_category]))
        
        # Gut Health Assessment
        if gut_prob > 0.6:
            gut_category = 'good'
        elif gut_prob > 0.3:
            gut_category = 'moderate'
        else:
            gut_category = 'poor'
        
        assessment_parts.append(random.choice(self.response_templates['gut_health'][gut_category]))
        
        # Diet Balance Assessment
        if diet_prob > 0.7:
            diet_category = 'excellent'
        elif diet_prob > 0.4:
            diet_category = 'good'
        else:
            diet_category = 'needs_improvement'
        
        assessment_parts.append(random.choice(self.response_templates['diet_balance'][diet_category]))
        
        return assessment_parts

    def generate_personalized_recommendations(self, health_info: Dict, probabilities: torch.Tensor) -> List[str]:
        """Generate comprehensive personalized recommendations"""
        recommendations = []
        
        # Age-based recommendations
        if health_info['age']:
            if health_info['age'] > 65:
                recommendations.extend([
                    "Regular comprehensive health screenings are crucial at your age.",
                    "Consider bone density testing and fall prevention strategies.",
                    "Prioritize balance and flexibility exercises alongside cardiovascular fitness."
                ])
            elif health_info['age'] > 50:
                recommendations.extend([
                    "Annual health screenings become increasingly important.",
                    "Focus on maintaining muscle mass through resistance training."
                ])
            elif health_info['age'] > 30:
                recommendations.append("This is an excellent time to establish healthy habits for long-term wellness.")
        
        # BMI-specific recommendations
        if health_info['bmi_category']:
            if health_info['bmi_category'] == 'obese':
                recommendations.extend([
                    "Consider working with a healthcare provider on a comprehensive weight management plan.",
                    "Focus on sustainable lifestyle changes rather than rapid weight loss."
                ])
            elif health_info['bmi_category'] == 'overweight':
                recommendations.append("Small, consistent changes in diet and exercise can help achieve a healthier weight.")
            elif health_info['bmi_category'] == 'underweight':
                recommendations.append("Consider consulting a nutritionist to safely increase muscle mass and overall weight.")
        
        # Medical condition-specific recommendations
        if 'diabetes' in health_info['medical_conditions']:
            recommendations.extend([
                "Regular blood glucose monitoring and A1C testing are essential.",
                "Focus on complex carbohydrates and consistent meal timing."
            ])
        
        if 'hypertension' in health_info['medical_conditions']:
            recommendations.extend([
                "Monitor blood pressure regularly and follow DASH diet principles.",
                "Limit sodium intake and prioritize potassium-rich foods."
            ])
        
        # Risk score-based recommendations
        if health_info['risk_score'] > 10:
            recommendations.append("Given multiple risk factors, working closely with healthcare providers is essential.")
        elif health_info['risk_score'] > 5:
            recommendations.append("Addressing current risk factors can significantly improve your long-term health outlook.")
        
        # Diet and lifestyle recommendations
        if len(probabilities) > 2 and probabilities[2].item() < 0.5:
            recommendations.extend([
                "Increase intake of colorful vegetables and fruits to at least 5 servings daily.",
                "Reduce processed foods and added sugars for better metabolic health.",
                "Consider meal planning to ensure consistent nutrition quality."
            ])
        
        if len(probabilities) > 1 and probabilities[1].item() < 0.4:
            recommendations.extend([
                "Support gut health with prebiotic and probiotic foods.",
                "Increase fiber intake gradually to improve digestive wellness."
            ])
        
        # Supplement recommendations
        if not health_info['supplements']:
            recommendations.append("Consider discussing basic supplementation (Vitamin D, B12) with your healthcare provider.")
        
        return recommendations[:8]  # Limit to most important recommendations

    def generate_overall_risk_summary(self, probabilities: torch.Tensor, health_info: Dict) -> str:
        """Generate comprehensive overall risk summary"""
        if not probabilities.numel():
            return "Unable to assess risk based on provided information."
        
        # Use risk score if available, otherwise use model probabilities
        if health_info['risk_score']:
            risk_score = health_info['risk_score']
            if risk_score <= 3:
                risk_level = "low"
                summary = "Your overall health profile suggests you're managing well with low risk factors. Continue maintaining your current healthy practices while staying vigilant about preventive care."
            elif risk_score <= 8:
                risk_level = "moderate"
                summary = "Your health profile shows both strengths and areas for improvement. With targeted lifestyle modifications, you can significantly enhance your wellness and reduce future health risks."
            else:
                risk_level = "elevated"
                summary = "Your health indicators suggest several areas requiring immediate attention. Consider developing a comprehensive wellness plan with healthcare professionals to address multiple risk factors."
        else:
            # Fallback to model probabilities
            avg_score = probabilities.mean().item()
            if avg_score > 0.7:
                risk_level = "low"
                summary = "Your overall health indicators suggest you're on a positive trajectory. Continue maintaining your current healthy practices."
            elif avg_score > 0.4:
                risk_level = "moderate"
                summary = "Your health profile shows both strengths and areas for improvement. With some targeted changes, you can significantly enhance your wellness."
            else:
                risk_level = "elevated"
                summary = "Your health indicators suggest several areas that need attention. Consider consulting with healthcare professionals for a comprehensive wellness plan."
        
        return f"**Overall Risk Level: {risk_level.upper()}**\n\n{summary}"

    def process_outputs(self, outputs, text_input: str) -> str:
        """Enhanced output processing with comprehensive analysis"""
        try:
            logits = outputs.logits
            probabilities = torch.softmax(logits, dim=-1)
            
            # Extract detailed health information
            health_info = self.extract_health_info(text_input)
            
            # Generate assessment components
            risk_assessments = self.generate_risk_assessment(probabilities[0], health_info)
            recommendations = self.generate_personalized_recommendations(health_info, probabilities[0])
            overall_summary = self.generate_overall_risk_summary(probabilities[0], health_info)
            
            # Construct comprehensive response
            response_parts = [
                "# πŸ₯ Comprehensive Health Analysis\n",
                overall_summary,
                "\n## πŸ“Š Health Profile Summary"
            ]
            
            # Add extracted health information
            if health_info['age']:
                response_parts.append(f"**Age:** {health_info['age']} years")
            
            if health_info['bmi']:
                response_parts.append(f"**BMI:** {health_info['bmi']} ({health_info['bmi_category'].title()})")
            
            if health_info['medical_conditions']:
                response_parts.append(f"**Medical Conditions:** {', '.join(health_info['medical_conditions']).title()}")
            
            if health_info['medications']:
                response_parts.append(f"**Medications:** {', '.join(health_info['medications']).title()}")
            
            response_parts.append("\n## πŸ” Detailed Health Assessment")
            
            for i, assessment in enumerate(risk_assessments, 1):
                response_parts.append(f"**{i}.** {assessment}")
            
            if recommendations:
                response_parts.append("\n## πŸ’‘ Personalized Recommendations")
                for i, rec in enumerate(recommendations, 1):
                    response_parts.append(f"**{i}.** {rec}")
            
            # Technical scores
            response_parts.append("\n## πŸ“ˆ Health Scores")
            if len(probabilities[0]) >= 3:
                response_parts.extend([
                    f"- **BMI Health Score:** {probabilities[0][0].item()*100:.1f}%",
                    f"- **Gut Health Score:** {probabilities[0][1].item()*100:.1f}%",
                    f"- **Diet Balance Score:** {probabilities[0][2].item()*100:.1f}%"
                ])
            
            if health_info['risk_score']:
                response_parts.append(f"- **Overall Risk Score:** {health_info['risk_score']}/20")
            
            response_parts.extend([
                "\n---",
                "⚠️ **Important Disclaimer:** This analysis is for informational purposes only and should not replace professional medical advice. Always consult with qualified healthcare providers for medical decisions."
            ])
            
            return "\n".join(response_parts)
            
        except Exception as e:
            logger.error(f"Error in process_outputs: {e}")
            return f"An error occurred during analysis: {str(e)}\nPlease check your input and try again."

def create_health_analyzer():
    """Factory function to create health analyzer with error handling"""
    try:
        return HealthAnalysisNLG()
    except Exception as e:
        logger.error(f"Failed to initialize health analyzer: {e}")
        return None

# Initialize the health analysis system
health_analyzer = create_health_analyzer()

def predict(text_input: str) -> str:
    """Main prediction function with enhanced error handling"""
    if not text_input or not text_input.strip():
        return "Please provide your health information for analysis. Include details like age, height, weight, medical conditions, diet, exercise habits, etc."
    
    if not health_analyzer or not health_analyzer.model:
        return "❌ **System Error:** Health analysis model is not available. Please try again later."
    
    try:
        # Tokenize and predict with proper error handling
        inputs = health_analyzer.tokenizer(
            text_input, 
            return_tensors="pt", 
            padding=True, 
            truncation=True, 
            max_length=512
        )
        
        with torch.no_grad():
            outputs = health_analyzer.model(**inputs)
        
        # Generate comprehensive response
        return health_analyzer.process_outputs(outputs, text_input)
    
    except Exception as e:
        logger.error(f"Prediction error: {e}")
        return f"❌ **Analysis Error:** {str(e)}\n\nPlease check your input format and try again. Ensure you include relevant health information like age, medical conditions, lifestyle factors, etc."

def create_interface():
    """Create an enhanced Gradio interface with better styling and examples"""
    
    enhanced_examples = [
        [
            "I am a 32-year-old male, 175cm tall, weighing 72kg. I have hypertension and high cholesterol. "
            "I take Lisinopril daily. My diet includes 2 servings of fruits and 3 servings of vegetables daily, "
            "with 1 serving of red meat per week and about 20g of sugar daily. I exercise 4 hours weekly, "
            "sleep 7 hours nightly, and have moderate stress levels. I take probiotics, Vitamin D, B12, and Magnesium supplements."
        ],
        [
            "45-year-old female, 165cm, 78kg, diabetes type 2, taking metformin. Sedentary job, high stress, "
            "poor diet with lots of processed foods, irregular meals. Sleep 5-6 hours nightly. No supplements."
        ],
        [
            "28-year-old female athlete, 170cm, 60kg, excellent physical condition, trains 6 days per week. "
            "Balanced Mediterranean diet, 8 hours sleep, low stress. Takes multivitamins and protein supplements."
        ],
        [
            "67-year-old male, 180cm, 85kg, heart disease, arthritis, taking atorvastatin and ibuprofen. "
            "Limited mobility, walks 30 minutes daily. Diet includes fish twice weekly, vegetables daily, some processed foods."
        ]
    ]
    
    interface = gr.Interface(
        fn=predict,
        inputs=gr.Textbox(
            label="🩺 Enter Your Comprehensive Health Information",
            placeholder="Provide detailed information including: age, height, weight, gender, medical conditions, medications, diet details, exercise habits, sleep patterns, stress levels, supplements, etc. The more detailed your input, the more accurate and personalized your analysis will be.",
            lines=6,
            max_lines=10
        ),
        outputs=gr.Textbox(
            label="πŸ“‹ Comprehensive Health Analysis & Personalized Recommendations",
            lines=20,
            max_lines=30
        ),
        title="πŸ₯ AI-Powered Comprehensive Health Risk Assessment",
        description="""
        **Welcome to your personalized health analysis system!** 
        
        This advanced AI tool analyzes your health information using BioBERT (a specialized medical AI model) to provide:
        - βœ… Comprehensive health risk assessment
        - πŸ“Š BMI analysis and categorization  
        - 🦠 Gut health evaluation
        - πŸ₯— Dietary balance assessment
        - πŸ’‘ Personalized health recommendations
        - πŸ“ˆ Detailed health scores and metrics
        
        **For best results, include:** demographics, medical history, current medications, detailed diet information, exercise habits, sleep patterns, stress levels, and any supplements you take.
        """,
        examples=enhanced_examples,
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        }
        .gr-button-primary {
            background: linear-gradient(45deg, #2196F3, #21CBF3);
            border: none;
        }
        .gr-box {
            border-radius: 10px;
        }
        """,
        allow_flagging="never"
    )
    
    return interface

# Main execution
if __name__ == "__main__":
    if health_analyzer:
        interface = create_interface()
        interface.launch(
            share=True,
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True
        )
    else:
        logger.error("Failed to initialize health analyzer. Cannot start interface.")
        print("❌ Failed to initialize the health analysis system. Please check the logs for details.")