from agent.prompts import coder_instructions, coder_system_message from langchain_core.messages import HumanMessage, SystemMessage from agent.models import llm_agents, llm_peripheral from langgraph.prebuilt import create_react_agent from langgraph.constants import START, END from agent.states import PlanCodingTask from langgraph.graph import StateGraph from agent.tools import coder_tools agent = create_react_agent( llm_agents, tools=coder_tools, prompt=coder_instructions ) def planning_node(state: dict): planer = llm_peripheral.with_structured_output(PlanCodingTask) plan = planer.invoke(state['messages'][-1].content) state.update(plan) return state def code_agent(state: dict): system_message = SystemMessage(coder_system_message(state)) state.update(agent.invoke({ 'messages': [ system_message, HumanMessage(state['task_description']), ] })) return state graph = StateGraph(dict) graph.add_node("planning_node", planning_node) graph.add_node("code_agent", code_agent) graph.add_edge(START, "planning_node") graph.add_edge("planning_node", "code_agent") graph.add_edge("code_agent", END) coder_agent = graph.compile(name="coder_agent")