from agent.prompts import deep_research_instructions, deep_research_system_message from langchain_core.messages import HumanMessage, SystemMessage from agent.models import llm_agents, llm_peripheral from langgraph.prebuilt import create_react_agent from agent.tools import deep_research_tools from langgraph.constants import START, END from langgraph.graph import StateGraph from agent.states import PlanResearch agent = create_react_agent( llm_agents, tools=deep_research_tools, prompt=deep_research_instructions ) def planning_node(state: dict): planer = llm_peripheral.with_structured_output(PlanResearch) plan = planer.invoke(state['messages'][-1].content) state.update(plan) return state def research_agent(state: dict): system_message = SystemMessage(deep_research_system_message(state)) state.update(agent.invoke({ 'messages': [ system_message, HumanMessage(state['messages'][-1].content), ] })) return state graph = StateGraph(dict) graph.add_node("planning_node", planning_node) graph.add_node("research_agent", research_agent) graph.add_edge(START, "planning_node") graph.add_edge("planning_node", "research_agent") graph.add_edge("research_agent", END) deep_research_agent = graph.compile(name="deep_research_agent")