Spaces:
Sleeping
Sleeping
File size: 12,594 Bytes
ec29974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from fastapi import FastAPI, File, UploadFile, Form, Request, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from typing import List, Optional
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader
from langchain.chains import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import json
import os
import google.generativeai as genai
import re
import nest_asyncio
import nltk
from langchain.text_splitter import CharacterTextSplitter
app = FastAPI()
templates = Jinja2Templates(directory="templates")
if os.getenv("FASTAPI_ENV") == "development":
nest_asyncio.apply()
nltk.download('averaged_perceptron_tagger_eng')
from nltk.tokenize import word_tokenize
# Initialize your model and other variables
uploaded_file_path = None
document_analyzed = False
summary = None
question_responses = []
api = None
llm = None
safety_settings = [
{"category": "HARM_CATEGORY_DANGEROUS", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
]
def format_text(text: str) -> str:
text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
text = text.replace('*', '<br>')
return text
# Route for main page
@app.get("/", response_class=HTMLResponse)
async def read_main(request: Request):
return templates.TemplateResponse("analyze.html", {
"request": request,
"summary": summary,
"show_conversation": document_analyzed,
"question_responses": question_responses
})
# Route for analyzing documents
@app.post("/", response_class=HTMLResponse)
async def analyze_document(
request: Request,
api_key: str = Form(...),
iam: str = Form(...),
context: str = Form(...),
output: str = Form(...),
summary_length: str = Form(...),
file: UploadFile = File(...)
):
global uploaded_file_path, document_analyzed, summary, question_responses, api, llm
loader = None
try:
# Initialize or update API key and models
api = api_key
genai.configure(api_key=api)
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", google_api_key=api)
# Save the uploaded file
uploaded_file_path = "uploaded_file" + os.path.splitext(file.filename)[1]
with open(uploaded_file_path, "wb") as f:
f.write(file.file.read())
# Determine the file type and load accordingly
file_extension = os.path.splitext(uploaded_file_path)[1].lower()
print(f"File extension: {file_extension}") # Debugging statement
if file_extension == ".pdf":
loader = PyPDFLoader(uploaded_file_path)
elif file_extension == ".csv":
loader = UnstructuredCSVLoader(uploaded_file_path, mode="elements", encoding="utf8")
elif file_extension == ".xlsx":
loader = UnstructuredExcelLoader(uploaded_file_path, mode="elements")
elif file_extension == ".docx":
loader = Docx2txtLoader(uploaded_file_path)
elif file_extension == ".pptx":
loader = UnstructuredPowerPointLoader(uploaded_file_path)
elif file_extension == ".mp3":
# Process audio files differently
audio_file = genai.upload_file(path=uploaded_file_path)
model = genai.GenerativeModel(model_name="gemini-1.5-flash")
prompt = f"I am an {iam}. This file is about {context}. Answer the question based on this file: {output}. Write a {summary_length} concise summary."
response = model.generate_content([prompt, audio_file], safety_settings=safety_settings)
summary = format_text(response.text)
document_analyzed = True
outputs = {"summary": summary}
with open("output_summary.json", "w") as outfile:
json.dump(outputs, outfile)
return templates.TemplateResponse("analyze.html", {
"request": request,
"summary": summary,
"show_conversation": document_analyzed,
"question_responses": question_responses
})
# If no loader is set, raise an exception
if loader is None:
raise HTTPException(status_code=400, detail=f"Unsupported file type: {file_extension}")
docs = loader.load()
prompt_template = PromptTemplate.from_template(
f"I am an {iam}. This file is about {context}. Answer the question based on this file: {output}. Write a {summary_length} concise summary of the following text: {{text}}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt_template)
stuff_chain = StuffDocumentsChain(llm_chain=llm_chain, document_variable_name="text")
response = stuff_chain.invoke(docs)
summary = format_text(response["output_text"])
document_analyzed = True
outputs = {"summary": summary}
with open("output.json", "w") as outfile:
json.dump(outputs, outfile)
return templates.TemplateResponse("analyze.html", {
"request": request,
"summary": summary,
"show_conversation": document_analyzed,
"question_responses": question_responses
})
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
# Route for asking questions
from langchain.text_splitter import CharacterTextSplitter # Ensure this is imported
@app.post("/ask", response_class=HTMLResponse)
async def ask_question(request: Request, question: str = Form(...)):
global uploaded_file_path, question_responses, llm, api
loader = None
if uploaded_file_path:
# Determine the file type and load accordingly
file_extension = os.path.splitext(uploaded_file_path)[1].lower()
if file_extension == ".pdf":
loader = PyPDFLoader(uploaded_file_path)
elif file_extension == ".csv":
loader = UnstructuredCSVLoader(uploaded_file_path, mode="elements")
elif file_extension == ".xlsx":
loader = UnstructuredExcelLoader(uploaded_file_path, mode="elements")
elif file_extension == ".docx":
loader = Docx2txtLoader(uploaded_file_path)
elif file_extension == ".pptx":
loader = UnstructuredPowerPointLoader(uploaded_file_path)
elif file_extension == ".mp3":
audio_file = genai.upload_file(path=uploaded_file_path)
model = genai.GenerativeModel(model_name="gemini-1.5-flash")
latest_conversation = request.cookies.get("latest_question_response", "")
prompt = "Answer the question based on the speech: " + question + (f" Latest conversation: {latest_conversation}" if latest_conversation else "")
response = model.generate_content([prompt, audio_file], safety_settings=safety_settings)
current_response = response.text
current_question = f"You asked: {question}"
# Save the latest question and response to the session
question_responses.append((current_question, current_response))
# Perform vector embedding and search
text = current_response # Use the summary generated from the MP3 content
os.environ["GOOGLE_API_KEY"] = api
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
summary_embedding = embeddings.embed_query(text)
document_search = FAISS.from_texts([text], embeddings)
if document_search:
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=1)
if results:
current_response = results[0].page_content
else:
current_response = "No matching document found in the database."
else:
current_response = "Vector database not initialized."
# Append the question and response from FAISS search
question_responses.append((current_question, current_response))
# Save all results including FAISS response to output.json
save_to_json(summary, question_responses)
# Save the latest question and response to the session
response = templates.TemplateResponse("analyze.html", {"request": request, "summary": summary, "show_conversation": document_analyzed, "question_responses": question_responses})
response.set_cookie(key="latest_question_response", value=current_response)
return response
# If no loader is set, raise an exception
if loader is None:
raise HTTPException(status_code=400, detail=f"Unsupported file type: {file_extension}")
docs = loader.load()
text = "\n".join([doc.page_content for doc in docs])
os.environ["GOOGLE_API_KEY"] = api
# Split the text into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
# Define the Summarize Chain for the question
latest_conversation = request.cookies.get("latest_question_response", "")
template1 = question + """ answer the question based on the following:
"{text}"
:""" + (f" Answer the Question with no more than 3 sentences. Latest conversation: {latest_conversation}" if latest_conversation else "")
current_response = ""
for chunk in chunks:
prompt1 = PromptTemplate.from_template(template1.format(text=chunk))
# Initialize the LLMChain with the prompt
llm_chain1 = LLMChain(llm=llm, prompt=prompt1)
response1 = llm_chain1.invoke({"text": chunk})
current_response += response1["text"] + "\n"
# Generate embeddings for the combined responses
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
summary_embedding = embeddings.embed_query(current_response)
document_search = FAISS.from_texts([current_response], embeddings)
# Perform a search on the FAISS vector database if it's initialized
if document_search:
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=1)
if results:
current_response = format_text(results[0].page_content)
else:
current_response = "No matching document found in the database."
else:
current_response = "Vector database not initialized."
# Append the question and response from FAISS search
current_question = f"You asked: {question}"
question_responses.append((current_question, current_response))
# Save all results to output.json
save_to_json(summary, question_responses)
# Save the latest question and response to the session
response = templates.TemplateResponse("analyze.html", {"request": request, "summary": summary, "show_conversation": document_analyzed, "question_responses": question_responses})
response.set_cookie(key="latest_question_response", value=current_response)
return response
else:
raise HTTPException(status_code=400, detail="No file has been uploaded yet.")
def save_to_json(summary, question_responses):
outputs = {
"summary": summary,
"question_responses": question_responses
}
with open("output_summary.json", "w") as outfile:
json.dump(outputs, outfile)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)
|