Spaces:
Sleeping
Sleeping
File size: 24,884 Bytes
bf7032a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import numpy as np
import google.generativeai as genai
from PIL import Image
from werkzeug.utils import secure_filename
import os
import json
from fpdf import FPDF
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
from typing import List
import textwrap
from IPython.display import display, Markdown
from PIL import Image
import shutil
from werkzeug.utils import secure_filename
import urllib.parse
import re
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader
from langchain.chains import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
sns.set_theme(color_codes=True)
uploaded_df = None
document_analyzed = False
question_responses = []
def format_text(text):
# Replace **text** with <b>text</b>
text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
# Replace any remaining * with <br>
text = text.replace('*', '<br>')
return text
def clean_data(df):
# Step 1: Clean currency-related columns
for col in df.columns:
if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']):
if df[col].dtype == 'object':
df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float)
# Step 2: Drop columns with more than 25% missing values
null_percentage = df.isnull().sum() / len(df)
columns_to_drop = null_percentage[null_percentage > 0.25].index
df.drop(columns=columns_to_drop, inplace=True)
# Step 3: Fill missing values for remaining columns
for col in df.columns:
if df[col].isnull().sum() > 0:
if null_percentage[col] <= 0.25:
if df[col].dtype in ['float64', 'int64']:
median_value = df[col].median()
df[col].fillna(median_value, inplace=True)
# Step 4: Convert object-type columns to lowercase
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].str.lower()
# Step 5: Drop columns with only one unique value
unique_value_columns = [col for col in df.columns if df[col].nunique() == 1]
df.drop(columns=unique_value_columns, inplace=True)
return df
def clean_data2(df):
for col in df.columns:
if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col:
if df[col].dtype == 'object':
df[col] = df[col].str.replace('$', '')
df[col] = df[col].str.replace('£', '')
df[col] = df[col].str.replace('€', '')
df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float)
null_percentage = df.isnull().sum() / len(df)
for col in df.columns:
if df[col].isnull().sum() > 0:
if null_percentage[col] <= 0.25:
if df[col].dtype in ['float64', 'int64']:
median_value = df[col].median()
df[col].fillna(median_value, inplace=True)
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].str.lower()
return df
def generate_plot(df, plot_path, plot_type):
df = clean_data(df)
excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"]
if plot_type == 'countplot':
cat_vars = [col for col in df.select_dtypes(include='object').columns
if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1]
for col in cat_vars:
if df[col].nunique() > 10:
top_categories = df[col].value_counts().index[:10]
df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other')
num_cols = len(cat_vars)
num_rows = (num_cols + 1) // 2
fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows))
axs = axs.flatten()
for i, var in enumerate(cat_vars):
category_counts = df[var].value_counts()
top_values = category_counts.index[:10][::-1]
filtered_df = df.copy()
filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True)
sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i])
axs[i].set_title(var)
axs[i].tick_params(axis='x', rotation=30)
total = len(filtered_df[var])
for p in axs[i].patches:
height = p.get_height()
axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom')
sample_size = filtered_df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
elif plot_type == 'histplot':
num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns
if all(word not in col.lower() for word in excluded_words)]
num_cols = len(num_vars)
num_rows = (num_cols + 2) // 3
fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows))
axs = axs.flatten()
plot_index = 0
for i, var in enumerate(num_vars):
if len(df[var].unique()) == len(df):
fig.delaxes(axs[plot_index])
else:
sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent")
axs[plot_index].set_title(var)
axs[plot_index].set_xlabel('')
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
plot_index += 1
for i in range(plot_index, len(axs)):
fig.delaxes(axs[i])
fig.tight_layout()
fig.savefig(plot_path)
plt.close(fig)
return plot_path
@app.get("/", response_class=HTMLResponse)
async def upload_file(request: Request):
return templates.TemplateResponse("upload.html", {"request": request})
@app.post("/result")
async def result(request: Request,
api_key: str = Form(...),
file: UploadFile = File(...),
custom_question: str = Form(...)):
global uploaded_df, uploaded_filename, plot1_path, plot2_path, response1, response2, api, question, uploaded_file
api = api_key
uploaded_file = file
if file.filename == '':
raise HTTPException(status_code=400, detail="No file selected")
# Secure and validate the file name
uploaded_filename = secure_filename(file.filename)
# Determine file path based on file type
if uploaded_filename.endswith('.csv'):
file_path = 'dataset.csv'
# Save the file
with open(file_path, 'wb') as buffer:
shutil.copyfileobj(file.file, buffer)
# Read the file into a DataFrame
df = pd.read_csv(file_path, encoding='utf-8')
elif uploaded_filename.endswith('.xlsx'):
file_path = 'dataset.xlsx'
# Save the file
with open(file_path, 'wb') as buffer:
shutil.copyfileobj(file.file, buffer)
# Read the file into a DataFrame
df = pd.read_excel(file_path)
else:
raise HTTPException(status_code=400, detail="Unsupported file format")
columns = df.columns.tolist()
def generate_gemini_response(plot_path):
global question
question = custom_question
genai.configure(api_key=api)
img = Image.open(plot_path)
model = genai.GenerativeModel('gemini-1.5-flash-latest')
response = model.generate_content([
question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights",
img
])
response.resolve()
return response.text
plot1_path = generate_plot(df, 'static/plot1.png', 'countplot')
plot2_path = generate_plot(df, 'static/plot2.png', 'histplot')
response1 = (generate_gemini_response(plot1_path))
response2 = (generate_gemini_response(plot2_path))
uploaded_df = df
outputs = {
"barchart_visualization": plot1_path,
"gemini_response1": response1,
"histoplot_visualization": plot2_path,
"gemini_response2": response2
}
with open("output.json", "w") as outfile:
json.dump(outputs, outfile)
def safe_encode(text):
try:
return text.encode('latin1', errors='replace').decode('latin1')
except Exception as e:
return f"Error encoding text: {str(e)}"
pdf = FPDF()
pdf.set_font("Arial", size=12)
# Single Countplot Barchart and response
pdf.add_page()
pdf.cell(200, 10, txt="Single Countplot Barchart", ln=True, align='C')
pdf.image(plot1_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Single Countplot Barchart Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response1))
# Single Histplot and response
pdf.add_page()
pdf.cell(200, 10, txt="Single Histplot", ln=True, align='C')
pdf.image(plot2_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Single Histplot Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response2))
pdf_output_path = 'static/analysis_report.pdf'
pdf.output(pdf_output_path)
return templates.TemplateResponse("upload.html", {
"request": request,
"response1": response1,
"response2": response2,
"plot1_path": plot1_path,
"plot2_path": plot2_path,
"columns": columns})
@app.get("/download_pdf")
async def download_pdf():
pdf_output_path = 'static/analysis_report.pdf'
return FileResponse(pdf_output_path, media_type='application/pdf', filename=os.path.basename(pdf_output_path))
@app.post("/streamlit")
async def streamlit(request: Request,
target_variable: str = Form(...),
columns_for_analysis: List[str] = Form(...)):
global uploaded_df, uploaded_filename, plot1_path, plot2_path, response1, response2, api, question, document_analyzed, plot3_path, plot4_path, response3, response4
target_variable_html = None
columns_for_analysis_html = None
response3 = None
response4 = None
plot3_path = None
plot4_path = None
if uploaded_df is None:
raise HTTPException(status_code=400, detail="No CSV file uploaded")
df = uploaded_df
# Process the uploaded file
if uploaded_filename.endswith('.csv'):
df = pd.read_csv('dataset.csv', encoding='utf-8')
elif uploaded_filename.endswith('.xlsx'):
df = pd.read_excel('dataset.xlsx')
# Select the target variable and columns for analysis from the original DataFrame
target_variable_data = df[target_variable]
columns_for_analysis_data = df[columns_for_analysis]
# Concatenate target variable and columns for analysis into a single DataFrame
df = pd.concat([target_variable_data, columns_for_analysis_data], axis=1)
# Clean the data (if needed)
df = clean_data2(df)
def generate_gemini_response(plot_path):
global question
genai.configure(api_key=api)
img = Image.open(plot_path)
model = genai.GenerativeModel('gemini-1.5-flash-latest')
response = model.generate_content([
question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights",
img
])
response.resolve()
return response.text
# Generate visualizations
# Multiclass Barplot
excluded_words = ["name", "postal", "date", "phone", "address", "id"]
# Get the names of all columns with data type 'object' (categorical variables)
cat_vars = [col for col in df.select_dtypes(include=['object']).columns
if all(word not in col.lower() for word in excluded_words)]
# Exclude the target variable from the list if it exists in cat_vars
if target_variable in cat_vars:
cat_vars.remove(target_variable)
# Create a figure with subplots, but only include the required number of subplots
num_cols = len(cat_vars)
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
axs = axs.flatten()
# Create a count plot for each categorical variable
for i, var in enumerate(cat_vars):
top_categories = df[var].value_counts().nlargest(5).index
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] # Exclude rows with NaN values in the variable
# Replace less frequent categories with "Other" if there are more than 5 unique values
if df[var].nunique() > 5:
other_categories = df[var].value_counts().index[5:]
filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other')
sns.countplot(x=var, hue=target_variable, stat="percent", data=filtered_df, ax=axs[i])
axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45)
# Change y-axis label to represent percentage
axs[i].set_ylabel('Percentage')
# Annotate the subplot with sample size
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
# Remove any remaining blank subplots
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
plt.xticks(rotation=45)
plt.tight_layout()
plot3_path = "static/multiclass_barplot.png"
plt.savefig(plot3_path)
plt.close(fig)
# Multiclass Histplot
# Get the names of all columns with data type 'object' (categorical columns)
cat_cols = df.columns.tolist()
# Get the names of all columns with data type 'int'
int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist()
int_vars = [col for col in int_vars if col != target_variable]
# Create a figure with subplots
num_cols = len(int_vars)
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
axs = axs.flatten()
# Create a histogram for each integer variable with hue='Attrition'
for i, var in enumerate(int_vars):
top_categories = df[var].value_counts().nlargest(10).index
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)]
sns.histplot(data=df, x=var, hue=target_variable, kde=True, ax=axs[i], stat="percent")
axs[i].set_title(var)
# Annotate the subplot with sample size
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
# Remove any extra empty subplots if needed
if num_cols < len(axs):
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
# Adjust spacing between subplots
fig.tight_layout()
plt.xticks(rotation=45)
plot4_path = "static/multiclass_histplot.png"
plt.savefig(plot4_path)
plt.close(fig)
response3 = (generate_gemini_response(plot3_path))
response4 = (generate_gemini_response(plot4_path))
document_analyzed = True
# Create a dictionary to store the outputs
outputs = {
"barchart_visualization": plot1_path,
"gemini_response1": response1,
"histoplot_visualization": plot2_path,
"gemini_response2": response2,
"multiBarchart_visualization": plot3_path,
"gemini_response3": response3,
"multiHistoplot_visualization": plot4_path,
"gemini_response4": response4
}
# Save the dictionary as a JSON file
with open("output1.json", "w") as outfile:
json.dump(outputs, outfile)
# Function to handle encoding to latin1
def safe_encode(text):
try:
return text.encode('latin1', errors='replace').decode('latin1') # Replace invalid characters
except Exception as e:
return f"Error encoding text: {str(e)}"
# Generate PDF with the results
pdf = FPDF()
pdf.set_font("Arial", size=12)
# Single Countplot Barchart and response
pdf.add_page()
pdf.cell(200, 10, txt="Single Countplot Barchart", ln=True, align='C')
pdf.image(plot1_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Single Countplot Barchart Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response1))
# Single Histplot and response
pdf.add_page()
pdf.cell(200, 10, txt="Single Histplot", ln=True, align='C')
pdf.image(plot2_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Single Histplot Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response2))
# Multiclass Countplot Barchart and response
pdf.add_page()
pdf.cell(200, 10, txt="Multiclass Countplot Barchart", ln=True, align='C')
pdf.image(plot3_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Multiclass Countplot Barchart Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response3))
# Multiclass Histplot and response
pdf.add_page()
pdf.cell(200, 10, txt="Multiclass Histplot", ln=True, align='C')
pdf.image(plot4_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Multiclass Histplot Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response4))
pdf_output_path = 'static/analysis_report_complete.pdf'
pdf.output(pdf_output_path)
return templates.TemplateResponse("upload.html", {
"request": request,
"plot1_path": plot1_path,
"response1": response1,
"plot2_path": plot2_path,
"response2": response2,
"plot3_path": plot3_path,
"response3": response3,
"plot4_path": plot4_path,
"response4": response4,
"show_conversation": document_analyzed,
"question_responses": question_responses
})
@app.get('/download_pdf2')
async def download_pdf2():
pdf_output_path2 = 'static/analysis_report_complete.pdf'
return FileResponse(pdf_output_path2, media_type='application/pdf', filename='analysis_report_complete.pdf')
# Route for asking questions
@app.post("/ask", response_class=HTMLResponse)
async def ask_question(request: Request, question: str = Form(...)):
global uploaded_filename, question_responses, api
global plot1_path, plot2_path, plot3_path, plot4_path
global response1, response2, response3, response4
global document_analyzed
# Check if a file has been uploaded
if not uploaded_filename:
raise HTTPException(status_code=400, detail="No file has been uploaded yet.")
# Initialize the LLM model
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", google_api_key=api)
# Determine the file extension and select the appropriate loader
file_path = ''
loader = None
if uploaded_filename.endswith('.csv'):
file_path = 'dataset.csv'
loader = UnstructuredCSVLoader(file_path, mode="elements")
elif uploaded_filename.endswith('.xlsx'):
file_path = 'dataset.xlsx'
loader = UnstructuredExcelLoader(file_path, mode="elements")
else:
raise HTTPException(status_code=400, detail="Unsupported file format")
# Load and process the document
try:
docs = loader.load()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}")
# Combine document text
text = "\n".join([doc.page_content for doc in docs])
os.environ["GOOGLE_API_KEY"] = api
# Initialize embeddings and create FAISS vector store
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
document_search = FAISS.from_texts(chunks, embeddings)
# Generate query embedding and perform similarity search
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=3)
if results:
retrieved_texts = " ".join([result.page_content for result in results])
# Define the Summarize Chain for the question
latest_conversation = request.cookies.get("latest_question_response", "")
template1 = (
f"{question} Answer the question based on the following:\n\"{text}\"\n:" +
(f" Answer the Question with only 3 sentences. Latest conversation: {latest_conversation}" if latest_conversation else "")
)
prompt1 = PromptTemplate.from_template(template1)
# Initialize the LLMChain with the prompt
llm_chain1 = LLMChain(llm=llm, prompt=prompt1)
# Invoke the chain to get the summary
try:
response_chain = llm_chain1.invoke({"text": text})
summary1 = response_chain["text"]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}")
# Generate embeddings for the summary
try:
summary_embedding = embeddings.embed_query(summary1)
document_search = FAISS.from_texts([summary1], embeddings)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}")
# Perform a search on the FAISS vector database
try:
if document_search:
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=1)
if results:
current_response = format_text(results[0].page_content)
else:
current_response = "No matching document found in the database."
else:
current_response = "Vector database not initialized."
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}")
else:
current_response = "No relevant results found."
# Append the question and response from FAISS search
current_question = f"You asked: {question}"
question_responses.append((current_question, current_response))
# Save all results to output_summary.json
save_to_json(question_responses)
# Prepare the response to render the HTML template
response = templates.TemplateResponse("upload.html", {
"request": request,
"plot1_path": plot1_path,
"response1": response1,
"plot2_path": plot2_path,
"response2": response2,
"plot3_path": plot3_path,
"response3": response3,
"plot4_path": plot4_path,
"response4": response4,
"show_conversation": document_analyzed,
"question_responses": question_responses,
})
response.set_cookie(key="latest_question_response", value=current_response)
return response
def save_to_json(question_responses):
outputs = {
"question_responses": question_responses
}
with open("output_summary.json", "w") as outfile:
json.dump(outputs, outfile)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)
|