import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import numpy as np
import google.generativeai as genai
from PIL import Image
from werkzeug.utils import secure_filename
import os
import json
from fpdf import FPDF
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
from typing import List
import textwrap
from IPython.display import display, Markdown
from PIL import Image
import shutil
from werkzeug.utils import secure_filename
import urllib.parse
import re
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader
from langchain.chains import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
sns.set_theme(color_codes=True)
uploaded_df = None
document_analyzed = False
question_responses = []
def format_text(text):
# Replace **text** with text
text = re.sub(r'\*\*(.*?)\*\*', r'\1', text)
# Replace any remaining * with
text = text.replace('*', '
')
return text
def clean_data(df):
# Step 1: Clean currency-related columns
for col in df.columns:
if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']):
if df[col].dtype == 'object':
df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float)
# Step 2: Drop columns with more than 25% missing values
null_percentage = df.isnull().sum() / len(df)
columns_to_drop = null_percentage[null_percentage > 0.25].index
df.drop(columns=columns_to_drop, inplace=True)
# Step 3: Fill missing values for remaining columns
for col in df.columns:
if df[col].isnull().sum() > 0:
if null_percentage[col] <= 0.25:
if df[col].dtype in ['float64', 'int64']:
median_value = df[col].median()
df[col].fillna(median_value, inplace=True)
# Step 4: Convert object-type columns to lowercase
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].str.lower()
# Step 5: Drop columns with only one unique value
unique_value_columns = [col for col in df.columns if df[col].nunique() == 1]
df.drop(columns=unique_value_columns, inplace=True)
return df
def clean_data2(df):
for col in df.columns:
if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col:
if df[col].dtype == 'object':
df[col] = df[col].str.replace('$', '')
df[col] = df[col].str.replace('£', '')
df[col] = df[col].str.replace('€', '')
df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float)
null_percentage = df.isnull().sum() / len(df)
for col in df.columns:
if df[col].isnull().sum() > 0:
if null_percentage[col] <= 0.25:
if df[col].dtype in ['float64', 'int64']:
median_value = df[col].median()
df[col].fillna(median_value, inplace=True)
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].str.lower()
return df
def generate_plot(df, plot_path, plot_type):
df = clean_data(df)
excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"]
if plot_type == 'countplot':
cat_vars = [col for col in df.select_dtypes(include='object').columns
if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1]
for col in cat_vars:
if df[col].nunique() > 10:
top_categories = df[col].value_counts().index[:10]
df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other')
num_cols = len(cat_vars)
num_rows = (num_cols + 1) // 2
fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows))
axs = axs.flatten()
for i, var in enumerate(cat_vars):
category_counts = df[var].value_counts()
top_values = category_counts.index[:10][::-1]
filtered_df = df.copy()
filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True)
sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i])
axs[i].set_title(var)
axs[i].tick_params(axis='x', rotation=30)
total = len(filtered_df[var])
for p in axs[i].patches:
height = p.get_height()
axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom')
sample_size = filtered_df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
elif plot_type == 'histplot':
num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns
if all(word not in col.lower() for word in excluded_words)]
num_cols = len(num_vars)
num_rows = (num_cols + 2) // 3
fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows))
axs = axs.flatten()
plot_index = 0
for i, var in enumerate(num_vars):
if len(df[var].unique()) == len(df):
fig.delaxes(axs[plot_index])
else:
sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent")
axs[plot_index].set_title(var)
axs[plot_index].set_xlabel('')
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
plot_index += 1
for i in range(plot_index, len(axs)):
fig.delaxes(axs[i])
fig.tight_layout()
fig.savefig(plot_path)
plt.close(fig)
return plot_path
@app.get("/", response_class=HTMLResponse)
async def upload_file(request: Request):
return templates.TemplateResponse("upload.html", {"request": request})
@app.post("/result")
async def result(request: Request,
api_key: str = Form(...),
file: UploadFile = File(...),
custom_question: str = Form(...)):
global uploaded_df, uploaded_filename, plot1_path, plot2_path, response1, response2, api, question, uploaded_file
api = api_key
uploaded_file = file
if file.filename == '':
raise HTTPException(status_code=400, detail="No file selected")
# Secure and validate the file name
uploaded_filename = secure_filename(file.filename)
# Determine file path based on file type
if uploaded_filename.endswith('.csv'):
file_path = 'dataset.csv'
# Save the file
with open(file_path, 'wb') as buffer:
shutil.copyfileobj(file.file, buffer)
# Read the file into a DataFrame
df = pd.read_csv(file_path, encoding='utf-8')
elif uploaded_filename.endswith('.xlsx'):
file_path = 'dataset.xlsx'
# Save the file
with open(file_path, 'wb') as buffer:
shutil.copyfileobj(file.file, buffer)
# Read the file into a DataFrame
df = pd.read_excel(file_path)
else:
raise HTTPException(status_code=400, detail="Unsupported file format")
columns = df.columns.tolist()
def generate_gemini_response(plot_path):
global question
question = custom_question
genai.configure(api_key=api)
img = Image.open(plot_path)
model = genai.GenerativeModel('gemini-1.5-flash-latest')
response = model.generate_content([
question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights",
img
])
response.resolve()
return response.text
plot1_path = generate_plot(df, 'static/plot1.png', 'countplot')
plot2_path = generate_plot(df, 'static/plot2.png', 'histplot')
response1 = (generate_gemini_response(plot1_path))
response2 = (generate_gemini_response(plot2_path))
uploaded_df = df
outputs = {
"barchart_visualization": plot1_path,
"gemini_response1": response1,
"histoplot_visualization": plot2_path,
"gemini_response2": response2
}
with open("output.json", "w") as outfile:
json.dump(outputs, outfile)
def safe_encode(text):
try:
return text.encode('latin1', errors='replace').decode('latin1')
except Exception as e:
return f"Error encoding text: {str(e)}"
pdf = FPDF()
pdf.set_font("Arial", size=12)
# Single Countplot Barchart and response
pdf.add_page()
pdf.cell(200, 10, txt="Single Countplot Barchart", ln=True, align='C')
pdf.image(plot1_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Single Countplot Barchart Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response1))
# Single Histplot and response
pdf.add_page()
pdf.cell(200, 10, txt="Single Histplot", ln=True, align='C')
pdf.image(plot2_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Single Histplot Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response2))
pdf_output_path = 'static/analysis_report.pdf'
pdf.output(pdf_output_path)
return templates.TemplateResponse("upload.html", {
"request": request,
"response1": response1,
"response2": response2,
"plot1_path": plot1_path,
"plot2_path": plot2_path,
"columns": columns})
@app.get("/download_pdf")
async def download_pdf():
pdf_output_path = 'static/analysis_report.pdf'
return FileResponse(pdf_output_path, media_type='application/pdf', filename=os.path.basename(pdf_output_path))
@app.post("/streamlit")
async def streamlit(request: Request,
target_variable: str = Form(...),
columns_for_analysis: List[str] = Form(...)):
global uploaded_df, uploaded_filename, plot1_path, plot2_path, response1, response2, api, question, document_analyzed, plot3_path, plot4_path, response3, response4
target_variable_html = None
columns_for_analysis_html = None
response3 = None
response4 = None
plot3_path = None
plot4_path = None
if uploaded_df is None:
raise HTTPException(status_code=400, detail="No CSV file uploaded")
df = uploaded_df
# Process the uploaded file
if uploaded_filename.endswith('.csv'):
df = pd.read_csv('dataset.csv', encoding='utf-8')
elif uploaded_filename.endswith('.xlsx'):
df = pd.read_excel('dataset.xlsx')
# Select the target variable and columns for analysis from the original DataFrame
target_variable_data = df[target_variable]
columns_for_analysis_data = df[columns_for_analysis]
# Concatenate target variable and columns for analysis into a single DataFrame
df = pd.concat([target_variable_data, columns_for_analysis_data], axis=1)
# Clean the data (if needed)
df = clean_data2(df)
def generate_gemini_response(plot_path):
global question
genai.configure(api_key=api)
img = Image.open(plot_path)
model = genai.GenerativeModel('gemini-1.5-flash-latest')
response = model.generate_content([
question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights",
img
])
response.resolve()
return response.text
# Generate visualizations
# Multiclass Barplot
excluded_words = ["name", "postal", "date", "phone", "address", "id"]
# Get the names of all columns with data type 'object' (categorical variables)
cat_vars = [col for col in df.select_dtypes(include=['object']).columns
if all(word not in col.lower() for word in excluded_words)]
# Exclude the target variable from the list if it exists in cat_vars
if target_variable in cat_vars:
cat_vars.remove(target_variable)
# Create a figure with subplots, but only include the required number of subplots
num_cols = len(cat_vars)
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
axs = axs.flatten()
# Create a count plot for each categorical variable
for i, var in enumerate(cat_vars):
top_categories = df[var].value_counts().nlargest(5).index
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] # Exclude rows with NaN values in the variable
# Replace less frequent categories with "Other" if there are more than 5 unique values
if df[var].nunique() > 5:
other_categories = df[var].value_counts().index[5:]
filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other')
sns.countplot(x=var, hue=target_variable, stat="percent", data=filtered_df, ax=axs[i])
axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45)
# Change y-axis label to represent percentage
axs[i].set_ylabel('Percentage')
# Annotate the subplot with sample size
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
# Remove any remaining blank subplots
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
plt.xticks(rotation=45)
plt.tight_layout()
plot3_path = "static/multiclass_barplot.png"
plt.savefig(plot3_path)
plt.close(fig)
# Multiclass Histplot
# Get the names of all columns with data type 'object' (categorical columns)
cat_cols = df.columns.tolist()
# Get the names of all columns with data type 'int'
int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist()
int_vars = [col for col in int_vars if col != target_variable]
# Create a figure with subplots
num_cols = len(int_vars)
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
axs = axs.flatten()
# Create a histogram for each integer variable with hue='Attrition'
for i, var in enumerate(int_vars):
top_categories = df[var].value_counts().nlargest(10).index
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)]
sns.histplot(data=df, x=var, hue=target_variable, kde=True, ax=axs[i], stat="percent")
axs[i].set_title(var)
# Annotate the subplot with sample size
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
# Remove any extra empty subplots if needed
if num_cols < len(axs):
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
# Adjust spacing between subplots
fig.tight_layout()
plt.xticks(rotation=45)
plot4_path = "static/multiclass_histplot.png"
plt.savefig(plot4_path)
plt.close(fig)
response3 = (generate_gemini_response(plot3_path))
response4 = (generate_gemini_response(plot4_path))
document_analyzed = True
# Create a dictionary to store the outputs
outputs = {
"barchart_visualization": plot1_path,
"gemini_response1": response1,
"histoplot_visualization": plot2_path,
"gemini_response2": response2,
"multiBarchart_visualization": plot3_path,
"gemini_response3": response3,
"multiHistoplot_visualization": plot4_path,
"gemini_response4": response4
}
# Save the dictionary as a JSON file
with open("output1.json", "w") as outfile:
json.dump(outputs, outfile)
# Function to handle encoding to latin1
def safe_encode(text):
try:
return text.encode('latin1', errors='replace').decode('latin1') # Replace invalid characters
except Exception as e:
return f"Error encoding text: {str(e)}"
# Generate PDF with the results
pdf = FPDF()
pdf.set_font("Arial", size=12)
# Single Countplot Barchart and response
pdf.add_page()
pdf.cell(200, 10, txt="Single Countplot Barchart", ln=True, align='C')
pdf.image(plot1_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Single Countplot Barchart Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response1))
# Single Histplot and response
pdf.add_page()
pdf.cell(200, 10, txt="Single Histplot", ln=True, align='C')
pdf.image(plot2_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Single Histplot Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response2))
# Multiclass Countplot Barchart and response
pdf.add_page()
pdf.cell(200, 10, txt="Multiclass Countplot Barchart", ln=True, align='C')
pdf.image(plot3_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Multiclass Countplot Barchart Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response3))
# Multiclass Histplot and response
pdf.add_page()
pdf.cell(200, 10, txt="Multiclass Histplot", ln=True, align='C')
pdf.image(plot4_path, x=10, y=30, w=190)
pdf.add_page()
pdf.cell(200, 10, txt="Multiclass Histplot Google Gemini Response", ln=True, align='C')
pdf.ln(10)
pdf.multi_cell(0, 10, safe_encode(response4))
pdf_output_path = 'static/analysis_report_complete.pdf'
pdf.output(pdf_output_path)
return templates.TemplateResponse("upload.html", {
"request": request,
"plot1_path": plot1_path,
"response1": response1,
"plot2_path": plot2_path,
"response2": response2,
"plot3_path": plot3_path,
"response3": response3,
"plot4_path": plot4_path,
"response4": response4,
"show_conversation": document_analyzed,
"question_responses": question_responses
})
@app.get('/download_pdf2')
async def download_pdf2():
pdf_output_path2 = 'static/analysis_report_complete.pdf'
return FileResponse(pdf_output_path2, media_type='application/pdf', filename='analysis_report_complete.pdf')
# Route for asking questions
@app.post("/ask", response_class=HTMLResponse)
async def ask_question(request: Request, question: str = Form(...)):
global uploaded_filename, question_responses, api
global plot1_path, plot2_path, plot3_path, plot4_path
global response1, response2, response3, response4
global document_analyzed
# Check if a file has been uploaded
if not uploaded_filename:
raise HTTPException(status_code=400, detail="No file has been uploaded yet.")
# Initialize the LLM model
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", google_api_key=api)
# Determine the file extension and select the appropriate loader
file_path = ''
loader = None
if uploaded_filename.endswith('.csv'):
file_path = 'dataset.csv'
loader = UnstructuredCSVLoader(file_path, mode="elements")
elif uploaded_filename.endswith('.xlsx'):
file_path = 'dataset.xlsx'
loader = UnstructuredExcelLoader(file_path, mode="elements")
else:
raise HTTPException(status_code=400, detail="Unsupported file format")
# Load and process the document
try:
docs = loader.load()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}")
# Combine document text
text = "\n".join([doc.page_content for doc in docs])
os.environ["GOOGLE_API_KEY"] = api
# Initialize embeddings and create FAISS vector store
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
document_search = FAISS.from_texts(chunks, embeddings)
# Generate query embedding and perform similarity search
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=3)
if results:
retrieved_texts = " ".join([result.page_content for result in results])
# Define the Summarize Chain for the question
latest_conversation = request.cookies.get("latest_question_response", "")
template1 = (
f"{question} Answer the question based on the following:\n\"{text}\"\n:" +
(f" Answer the Question with only 3 sentences. Latest conversation: {latest_conversation}" if latest_conversation else "")
)
prompt1 = PromptTemplate.from_template(template1)
# Initialize the LLMChain with the prompt
llm_chain1 = LLMChain(llm=llm, prompt=prompt1)
# Invoke the chain to get the summary
try:
response_chain = llm_chain1.invoke({"text": text})
summary1 = response_chain["text"]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}")
# Generate embeddings for the summary
try:
summary_embedding = embeddings.embed_query(summary1)
document_search = FAISS.from_texts([summary1], embeddings)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}")
# Perform a search on the FAISS vector database
try:
if document_search:
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=1)
if results:
current_response = format_text(results[0].page_content)
else:
current_response = "No matching document found in the database."
else:
current_response = "Vector database not initialized."
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}")
else:
current_response = "No relevant results found."
# Append the question and response from FAISS search
current_question = f"You asked: {question}"
question_responses.append((current_question, current_response))
# Save all results to output_summary.json
save_to_json(question_responses)
# Prepare the response to render the HTML template
response = templates.TemplateResponse("upload.html", {
"request": request,
"plot1_path": plot1_path,
"response1": response1,
"plot2_path": plot2_path,
"response2": response2,
"plot3_path": plot3_path,
"response3": response3,
"plot4_path": plot4_path,
"response4": response4,
"show_conversation": document_analyzed,
"question_responses": question_responses,
})
response.set_cookie(key="latest_question_response", value=current_response)
return response
def save_to_json(question_responses):
outputs = {
"question_responses": question_responses
}
with open("output_summary.json", "w") as outfile:
json.dump(outputs, outfile)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)