import pandas as pd import seaborn as sns import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import numpy as np import google.generativeai as genai from PIL import Image from werkzeug.utils import secure_filename import os import json from fpdf import FPDF from fastapi import FastAPI, File, UploadFile, Form, HTTPException from fastapi.responses import HTMLResponse, FileResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from starlette.requests import Request from typing import List import textwrap from IPython.display import display, Markdown from PIL import Image import shutil from werkzeug.utils import secure_filename import urllib.parse import re from langchain_google_genai import ChatGoogleGenerativeAI from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader from langchain.chains import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.vectorstores import FAISS from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain.text_splitter import CharacterTextSplitter app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="templates") sns.set_theme(color_codes=True) uploaded_df = None document_analyzed = False question_responses = [] def format_text(text): # Replace **text** with text text = re.sub(r'\*\*(.*?)\*\*', r'\1', text) # Replace any remaining * with
text = text.replace('*', '
') return text def clean_data(df): # Step 1: Clean currency-related columns for col in df.columns: if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']): if df[col].dtype == 'object': df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float) # Step 2: Drop columns with more than 25% missing values null_percentage = df.isnull().sum() / len(df) columns_to_drop = null_percentage[null_percentage > 0.25].index df.drop(columns=columns_to_drop, inplace=True) # Step 3: Fill missing values for remaining columns for col in df.columns: if df[col].isnull().sum() > 0: if null_percentage[col] <= 0.25: if df[col].dtype in ['float64', 'int64']: median_value = df[col].median() df[col].fillna(median_value, inplace=True) # Step 4: Convert object-type columns to lowercase for col in df.columns: if df[col].dtype == 'object': df[col] = df[col].str.lower() # Step 5: Drop columns with only one unique value unique_value_columns = [col for col in df.columns if df[col].nunique() == 1] df.drop(columns=unique_value_columns, inplace=True) return df def clean_data2(df): for col in df.columns: if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col: if df[col].dtype == 'object': df[col] = df[col].str.replace('$', '') df[col] = df[col].str.replace('£', '') df[col] = df[col].str.replace('€', '') df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float) null_percentage = df.isnull().sum() / len(df) for col in df.columns: if df[col].isnull().sum() > 0: if null_percentage[col] <= 0.25: if df[col].dtype in ['float64', 'int64']: median_value = df[col].median() df[col].fillna(median_value, inplace=True) for col in df.columns: if df[col].dtype == 'object': df[col] = df[col].str.lower() return df def generate_plot(df, plot_path, plot_type): df = clean_data(df) excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"] if plot_type == 'countplot': cat_vars = [col for col in df.select_dtypes(include='object').columns if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1] for col in cat_vars: if df[col].nunique() > 10: top_categories = df[col].value_counts().index[:10] df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other') num_cols = len(cat_vars) num_rows = (num_cols + 1) // 2 fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows)) axs = axs.flatten() for i, var in enumerate(cat_vars): category_counts = df[var].value_counts() top_values = category_counts.index[:10][::-1] filtered_df = df.copy() filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True) sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i]) axs[i].set_title(var) axs[i].tick_params(axis='x', rotation=30) total = len(filtered_df[var]) for p in axs[i].patches: height = p.get_height() axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom') sample_size = filtered_df.shape[0] axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center') for i in range(num_cols, len(axs)): fig.delaxes(axs[i]) elif plot_type == 'histplot': num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns if all(word not in col.lower() for word in excluded_words)] num_cols = len(num_vars) num_rows = (num_cols + 2) // 3 fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows)) axs = axs.flatten() plot_index = 0 for i, var in enumerate(num_vars): if len(df[var].unique()) == len(df): fig.delaxes(axs[plot_index]) else: sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent") axs[plot_index].set_title(var) axs[plot_index].set_xlabel('') sample_size = df.shape[0] axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center') plot_index += 1 for i in range(plot_index, len(axs)): fig.delaxes(axs[i]) fig.tight_layout() fig.savefig(plot_path) plt.close(fig) return plot_path @app.get("/", response_class=HTMLResponse) async def upload_file(request: Request): return templates.TemplateResponse("upload.html", {"request": request}) @app.post("/result") async def result(request: Request, api_key: str = Form(...), file: UploadFile = File(...), custom_question: str = Form(...)): global uploaded_df, uploaded_filename, plot1_path, plot2_path, response1, response2, api, question, uploaded_file api = api_key uploaded_file = file if file.filename == '': raise HTTPException(status_code=400, detail="No file selected") # Secure and validate the file name uploaded_filename = secure_filename(file.filename) # Determine file path based on file type if uploaded_filename.endswith('.csv'): file_path = 'dataset.csv' # Save the file with open(file_path, 'wb') as buffer: shutil.copyfileobj(file.file, buffer) # Read the file into a DataFrame df = pd.read_csv(file_path, encoding='utf-8') elif uploaded_filename.endswith('.xlsx'): file_path = 'dataset.xlsx' # Save the file with open(file_path, 'wb') as buffer: shutil.copyfileobj(file.file, buffer) # Read the file into a DataFrame df = pd.read_excel(file_path) else: raise HTTPException(status_code=400, detail="Unsupported file format") columns = df.columns.tolist() def generate_gemini_response(plot_path): global question question = custom_question genai.configure(api_key=api) img = Image.open(plot_path) model = genai.GenerativeModel('gemini-1.5-flash-latest') response = model.generate_content([ question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights", img ]) response.resolve() return response.text plot1_path = generate_plot(df, 'static/plot1.png', 'countplot') plot2_path = generate_plot(df, 'static/plot2.png', 'histplot') response1 = (generate_gemini_response(plot1_path)) response2 = (generate_gemini_response(plot2_path)) uploaded_df = df outputs = { "barchart_visualization": plot1_path, "gemini_response1": response1, "histoplot_visualization": plot2_path, "gemini_response2": response2 } with open("output.json", "w") as outfile: json.dump(outputs, outfile) def safe_encode(text): try: return text.encode('latin1', errors='replace').decode('latin1') except Exception as e: return f"Error encoding text: {str(e)}" pdf = FPDF() pdf.set_font("Arial", size=12) # Single Countplot Barchart and response pdf.add_page() pdf.cell(200, 10, txt="Single Countplot Barchart", ln=True, align='C') pdf.image(plot1_path, x=10, y=30, w=190) pdf.add_page() pdf.cell(200, 10, txt="Single Countplot Barchart Google Gemini Response", ln=True, align='C') pdf.ln(10) pdf.multi_cell(0, 10, safe_encode(response1)) # Single Histplot and response pdf.add_page() pdf.cell(200, 10, txt="Single Histplot", ln=True, align='C') pdf.image(plot2_path, x=10, y=30, w=190) pdf.add_page() pdf.cell(200, 10, txt="Single Histplot Google Gemini Response", ln=True, align='C') pdf.ln(10) pdf.multi_cell(0, 10, safe_encode(response2)) pdf_output_path = 'static/analysis_report.pdf' pdf.output(pdf_output_path) return templates.TemplateResponse("upload.html", { "request": request, "response1": response1, "response2": response2, "plot1_path": plot1_path, "plot2_path": plot2_path, "columns": columns}) @app.get("/download_pdf") async def download_pdf(): pdf_output_path = 'static/analysis_report.pdf' return FileResponse(pdf_output_path, media_type='application/pdf', filename=os.path.basename(pdf_output_path)) @app.post("/streamlit") async def streamlit(request: Request, target_variable: str = Form(...), columns_for_analysis: List[str] = Form(...)): global uploaded_df, uploaded_filename, plot1_path, plot2_path, response1, response2, api, question, document_analyzed, plot3_path, plot4_path, response3, response4 target_variable_html = None columns_for_analysis_html = None response3 = None response4 = None plot3_path = None plot4_path = None if uploaded_df is None: raise HTTPException(status_code=400, detail="No CSV file uploaded") df = uploaded_df # Process the uploaded file if uploaded_filename.endswith('.csv'): df = pd.read_csv('dataset.csv', encoding='utf-8') elif uploaded_filename.endswith('.xlsx'): df = pd.read_excel('dataset.xlsx') # Select the target variable and columns for analysis from the original DataFrame target_variable_data = df[target_variable] columns_for_analysis_data = df[columns_for_analysis] # Concatenate target variable and columns for analysis into a single DataFrame df = pd.concat([target_variable_data, columns_for_analysis_data], axis=1) # Clean the data (if needed) df = clean_data2(df) def generate_gemini_response(plot_path): global question genai.configure(api_key=api) img = Image.open(plot_path) model = genai.GenerativeModel('gemini-1.5-flash-latest') response = model.generate_content([ question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights", img ]) response.resolve() return response.text # Generate visualizations # Multiclass Barplot excluded_words = ["name", "postal", "date", "phone", "address", "id"] # Get the names of all columns with data type 'object' (categorical variables) cat_vars = [col for col in df.select_dtypes(include=['object']).columns if all(word not in col.lower() for word in excluded_words)] # Exclude the target variable from the list if it exists in cat_vars if target_variable in cat_vars: cat_vars.remove(target_variable) # Create a figure with subplots, but only include the required number of subplots num_cols = len(cat_vars) num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows)) axs = axs.flatten() # Create a count plot for each categorical variable for i, var in enumerate(cat_vars): top_categories = df[var].value_counts().nlargest(5).index filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] # Exclude rows with NaN values in the variable # Replace less frequent categories with "Other" if there are more than 5 unique values if df[var].nunique() > 5: other_categories = df[var].value_counts().index[5:] filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other') sns.countplot(x=var, hue=target_variable, stat="percent", data=filtered_df, ax=axs[i]) axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45) # Change y-axis label to represent percentage axs[i].set_ylabel('Percentage') # Annotate the subplot with sample size sample_size = df.shape[0] axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center') # Remove any remaining blank subplots for i in range(num_cols, len(axs)): fig.delaxes(axs[i]) plt.xticks(rotation=45) plt.tight_layout() plot3_path = "static/multiclass_barplot.png" plt.savefig(plot3_path) plt.close(fig) # Multiclass Histplot # Get the names of all columns with data type 'object' (categorical columns) cat_cols = df.columns.tolist() # Get the names of all columns with data type 'int' int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist() int_vars = [col for col in int_vars if col != target_variable] # Create a figure with subplots num_cols = len(int_vars) num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows)) axs = axs.flatten() # Create a histogram for each integer variable with hue='Attrition' for i, var in enumerate(int_vars): top_categories = df[var].value_counts().nlargest(10).index filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] sns.histplot(data=df, x=var, hue=target_variable, kde=True, ax=axs[i], stat="percent") axs[i].set_title(var) # Annotate the subplot with sample size sample_size = df.shape[0] axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center') # Remove any extra empty subplots if needed if num_cols < len(axs): for i in range(num_cols, len(axs)): fig.delaxes(axs[i]) # Adjust spacing between subplots fig.tight_layout() plt.xticks(rotation=45) plot4_path = "static/multiclass_histplot.png" plt.savefig(plot4_path) plt.close(fig) response3 = (generate_gemini_response(plot3_path)) response4 = (generate_gemini_response(plot4_path)) document_analyzed = True # Create a dictionary to store the outputs outputs = { "barchart_visualization": plot1_path, "gemini_response1": response1, "histoplot_visualization": plot2_path, "gemini_response2": response2, "multiBarchart_visualization": plot3_path, "gemini_response3": response3, "multiHistoplot_visualization": plot4_path, "gemini_response4": response4 } # Save the dictionary as a JSON file with open("output1.json", "w") as outfile: json.dump(outputs, outfile) # Function to handle encoding to latin1 def safe_encode(text): try: return text.encode('latin1', errors='replace').decode('latin1') # Replace invalid characters except Exception as e: return f"Error encoding text: {str(e)}" # Generate PDF with the results pdf = FPDF() pdf.set_font("Arial", size=12) # Single Countplot Barchart and response pdf.add_page() pdf.cell(200, 10, txt="Single Countplot Barchart", ln=True, align='C') pdf.image(plot1_path, x=10, y=30, w=190) pdf.add_page() pdf.cell(200, 10, txt="Single Countplot Barchart Google Gemini Response", ln=True, align='C') pdf.ln(10) pdf.multi_cell(0, 10, safe_encode(response1)) # Single Histplot and response pdf.add_page() pdf.cell(200, 10, txt="Single Histplot", ln=True, align='C') pdf.image(plot2_path, x=10, y=30, w=190) pdf.add_page() pdf.cell(200, 10, txt="Single Histplot Google Gemini Response", ln=True, align='C') pdf.ln(10) pdf.multi_cell(0, 10, safe_encode(response2)) # Multiclass Countplot Barchart and response pdf.add_page() pdf.cell(200, 10, txt="Multiclass Countplot Barchart", ln=True, align='C') pdf.image(plot3_path, x=10, y=30, w=190) pdf.add_page() pdf.cell(200, 10, txt="Multiclass Countplot Barchart Google Gemini Response", ln=True, align='C') pdf.ln(10) pdf.multi_cell(0, 10, safe_encode(response3)) # Multiclass Histplot and response pdf.add_page() pdf.cell(200, 10, txt="Multiclass Histplot", ln=True, align='C') pdf.image(plot4_path, x=10, y=30, w=190) pdf.add_page() pdf.cell(200, 10, txt="Multiclass Histplot Google Gemini Response", ln=True, align='C') pdf.ln(10) pdf.multi_cell(0, 10, safe_encode(response4)) pdf_output_path = 'static/analysis_report_complete.pdf' pdf.output(pdf_output_path) return templates.TemplateResponse("upload.html", { "request": request, "plot1_path": plot1_path, "response1": response1, "plot2_path": plot2_path, "response2": response2, "plot3_path": plot3_path, "response3": response3, "plot4_path": plot4_path, "response4": response4, "show_conversation": document_analyzed, "question_responses": question_responses }) @app.get('/download_pdf2') async def download_pdf2(): pdf_output_path2 = 'static/analysis_report_complete.pdf' return FileResponse(pdf_output_path2, media_type='application/pdf', filename='analysis_report_complete.pdf') # Route for asking questions @app.post("/ask", response_class=HTMLResponse) async def ask_question(request: Request, question: str = Form(...)): global uploaded_filename, question_responses, api global plot1_path, plot2_path, plot3_path, plot4_path global response1, response2, response3, response4 global document_analyzed # Check if a file has been uploaded if not uploaded_filename: raise HTTPException(status_code=400, detail="No file has been uploaded yet.") # Initialize the LLM model llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", google_api_key=api) # Determine the file extension and select the appropriate loader file_path = '' loader = None if uploaded_filename.endswith('.csv'): file_path = 'dataset.csv' loader = UnstructuredCSVLoader(file_path, mode="elements") elif uploaded_filename.endswith('.xlsx'): file_path = 'dataset.xlsx' loader = UnstructuredExcelLoader(file_path, mode="elements") else: raise HTTPException(status_code=400, detail="Unsupported file format") # Load and process the document try: docs = loader.load() except Exception as e: raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}") # Combine document text text = "\n".join([doc.page_content for doc in docs]) os.environ["GOOGLE_API_KEY"] = api # Initialize embeddings and create FAISS vector store embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.split_text(text) document_search = FAISS.from_texts(chunks, embeddings) # Generate query embedding and perform similarity search query_embedding = embeddings.embed_query(question) results = document_search.similarity_search_by_vector(query_embedding, k=3) if results: retrieved_texts = " ".join([result.page_content for result in results]) # Define the Summarize Chain for the question latest_conversation = request.cookies.get("latest_question_response", "") template1 = ( f"{question} Answer the question based on the following:\n\"{text}\"\n:" + (f" Answer the Question with only 3 sentences. Latest conversation: {latest_conversation}" if latest_conversation else "") ) prompt1 = PromptTemplate.from_template(template1) # Initialize the LLMChain with the prompt llm_chain1 = LLMChain(llm=llm, prompt=prompt1) # Invoke the chain to get the summary try: response_chain = llm_chain1.invoke({"text": text}) summary1 = response_chain["text"] except Exception as e: raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}") # Generate embeddings for the summary try: summary_embedding = embeddings.embed_query(summary1) document_search = FAISS.from_texts([summary1], embeddings) except Exception as e: raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}") # Perform a search on the FAISS vector database try: if document_search: query_embedding = embeddings.embed_query(question) results = document_search.similarity_search_by_vector(query_embedding, k=1) if results: current_response = format_text(results[0].page_content) else: current_response = "No matching document found in the database." else: current_response = "Vector database not initialized." except Exception as e: raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}") else: current_response = "No relevant results found." # Append the question and response from FAISS search current_question = f"You asked: {question}" question_responses.append((current_question, current_response)) # Save all results to output_summary.json save_to_json(question_responses) # Prepare the response to render the HTML template response = templates.TemplateResponse("upload.html", { "request": request, "plot1_path": plot1_path, "response1": response1, "plot2_path": plot2_path, "response2": response2, "plot3_path": plot3_path, "response3": response3, "plot4_path": plot4_path, "response4": response4, "show_conversation": document_analyzed, "question_responses": question_responses, }) response.set_cookie(key="latest_question_response", value=current_response) return response def save_to_json(question_responses): outputs = { "question_responses": question_responses } with open("output_summary.json", "w") as outfile: json.dump(outputs, outfile) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="127.0.0.1", port=8000)