Spaces:
Sleeping
Sleeping
File size: 30,410 Bytes
2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 32aab7e 2f69b10 5ee5727 2f69b10 3afab17 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 2f69b10 5ee5727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import numpy as np
import google.generativeai as genai
from PIL import Image
from werkzeug.utils import secure_filename
import os
import json
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
from typing import List
import textwrap
from IPython.display import display, Markdown
from PIL import Image
import shutil
from werkzeug.utils import secure_filename
import urllib.parse
import re
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
import PIL.Image
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
sns.set_theme(color_codes=True)
uploaded_df = None
document_analyzed = False
question_responses = []
def format_text(text):
# Replace **text** with <b>text</b>
text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
# Replace any remaining * with <br>
text = text.replace('*', '<br>')
return text
def clean_data(df):
# Step 1: Clean currency-related columns
for col in df.columns:
if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']):
if df[col].dtype == 'object':
df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float)
# Step 2: Drop columns with more than 25% missing values
null_percentage = df.isnull().sum() / len(df)
columns_to_drop = null_percentage[null_percentage > 0.25].index
df.drop(columns=columns_to_drop, inplace=True)
# Step 3: Fill missing values for remaining columns
for col in df.columns:
if df[col].isnull().sum() > 0:
if null_percentage[col] <= 0.25:
if df[col].dtype in ['float64', 'int64']:
median_value = df[col].median()
df[col].fillna(median_value, inplace=True)
# Step 4: Convert object-type columns to lowercase
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].str.lower()
# Step 5: Drop columns with only one unique value
unique_value_columns = [col for col in df.columns if df[col].nunique() == 1]
df.drop(columns=unique_value_columns, inplace=True)
return df
def clean_data2(df):
for col in df.columns:
if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col:
if df[col].dtype == 'object':
df[col] = df[col].str.replace('$', '')
df[col] = df[col].str.replace('£', '')
df[col] = df[col].str.replace('€', '')
df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float)
null_percentage = df.isnull().sum() / len(df)
for col in df.columns:
if df[col].isnull().sum() > 0:
if null_percentage[col] <= 0.25:
if df[col].dtype in ['float64', 'int64']:
median_value = df[col].median()
df[col].fillna(median_value, inplace=True)
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].str.lower()
return df
def generate_plot(df, plot_path, plot_type):
df = clean_data(df)
excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"]
if plot_type == 'countplot':
cat_vars = [col for col in df.select_dtypes(include='object').columns
if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1]
for col in cat_vars:
if df[col].nunique() > 10:
top_categories = df[col].value_counts().index[:10]
df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other')
num_cols = len(cat_vars)
num_rows = (num_cols + 1) // 2
fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows))
axs = axs.flatten()
for i, var in enumerate(cat_vars):
category_counts = df[var].value_counts()
top_values = category_counts.index[:10][::-1]
filtered_df = df.copy()
filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True)
sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i])
axs[i].set_title(var)
axs[i].tick_params(axis='x', rotation=30)
total = len(filtered_df[var])
for p in axs[i].patches:
height = p.get_height()
axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom')
sample_size = filtered_df.shape[0]
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
elif plot_type == 'histplot':
num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns
if all(word not in col.lower() for word in excluded_words)]
num_cols = len(num_vars)
num_rows = (num_cols + 2) // 3
fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows))
axs = axs.flatten()
plot_index = 0
for i, var in enumerate(num_vars):
if len(df[var].unique()) == len(df):
fig.delaxes(axs[plot_index])
else:
sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent")
axs[plot_index].set_title(var)
axs[plot_index].set_xlabel('')
sample_size = df.shape[0]
plot_index += 1
for i in range(plot_index, len(axs)):
fig.delaxes(axs[i])
fig.tight_layout()
fig.savefig(plot_path)
plt.close(fig)
return plot_path
@app.get("/", response_class=HTMLResponse)
async def read_form(request: Request):
return templates.TemplateResponse("upload.html", {"request": request})
@app.post("/process", response_class=HTMLResponse)
async def process_file(request: Request, file: UploadFile = File(...)):
global df, uploaded_file, document_analyzed, file_path, file_extension
uploaded_file = file
file_location = f"static/{file.filename}"
# Save the uploaded file to the server
with open(file_location, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Load DataFrame based on file type
file_extension = os.path.splitext(file.filename)[1]
if file_extension == '.csv':
file_path = 'dataset.csv'
df = pd.read_csv(file_location, delimiter=",")
df.to_csv(file_path, index=False) # Save as dataset.csv
elif file_extension == '.xlsx':
file_path = 'dataset.xlsx'
df = pd.read_excel(file_location)
df.to_excel(file_path, index=False) # Save as dataset.xlsx
else:
raise HTTPException(status_code=415, detail="Unsupported file format")
# Get columns of the DataFrame
columns = df.columns.tolist()
return templates.TemplateResponse("upload.html", {"request": request, "columns": columns})
@app.post("/result")
async def result(request: Request,
target: str = Form(...),
question: str = Form(...),
algorithm: str = Form(...)):
global df, api
global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
api = "AIzaSyBqYpSLeY5lIzo11DQAL20QLG1Slr4MjIU"
excluded_words = ["name", "postal", "date", "phone", "address", "id"]
def generate_gemini_response(plot_path):
genai.configure(api_key=api)
model = genai.GenerativeModel('gemini-1.5-flash-latest')
img = Image.open(plot_path)
response = model.generate_content([question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights.", img])
response.resolve()
return response.text
if df[target].dtype in ['float64', 'int64']:
unique_values = df[target].nunique()
# If unique values > 20, treat it as regression, else classification
if unique_values > 20:
method = "Regression"
else:
method = "Classification"
else:
# If the target is not numeric, treat it as classification
method = "Classification"
# Initialize response3 and plot3_path to None
response3 = None
plot3_path = None
response4 = None
plot4_path = None
response6 = None
plot6_path = None
response8 = None # Initialize response8
plot8_path = None # Initialize plot8_path
response9 = None # Initialize response9
plot9_path = None # Initialize plot9_path
response10 = None # Initialize response8
plot10_path = None # Initialize plot8_path
response11 = None # Initialize response9
plot11_path = None # Initialize plot9_path
if method == "Classification":
cat_vars = [col for col in df.select_dtypes(include=['object']).columns
if all(word not in col.lower() for word in excluded_words)]
# Exclude the target variable from the list if it exists in cat_vars
if target in cat_vars:
cat_vars.remove(target)
# Create a figure with subplots, but only include the required number of subplots
num_cols = len(cat_vars)
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
axs = axs.flatten()
# Create a count plot for each categorical variable
for i, var in enumerate(cat_vars):
top_categories = df[var].value_counts().nlargest(5).index
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] # Exclude rows with NaN values in the variable
# Replace less frequent categories with "Other" if there are more than 5 unique values
if df[var].nunique() > 5:
other_categories = df[var].value_counts().index[5:]
filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other')
sns.countplot(x=var, hue=target, stat="percent", data=filtered_df, ax=axs[i])
axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45)
# Change y-axis label to represent percentage
axs[i].set_ylabel('Percentage')
# Annotate the subplot with sample size
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
# Remove any remaining blank subplots
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
plt.xticks(rotation=45)
plt.tight_layout()
plot3_path = "static/multiclass_barplot.png"
plt.savefig(plot3_path)
plt.close(fig)
response3 = format_text(generate_gemini_response(plot3_path))
if method == "Classification":
# Generate Multiclass Pairplot
pairplot_fig = sns.pairplot(df, hue=target)
plot6_path = "static/pair1.png" # Use plot6_path
pairplot_fig.savefig(plot6_path) # Save the pairplot as a PNG file
response6 = format_text(generate_gemini_response(plot6_path))
if method == "Classification":
# Multiclass Histplot
# Get the names of all columns with data type 'object' (categorical columns)
cat_cols = df.columns.tolist()
# Get the names of all columns with data type 'int'
int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist()
int_vars = [col for col in int_vars if col != target]
# Create a figure with subplots
num_cols = len(int_vars)
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
axs = axs.flatten()
# Create a histogram for each integer variable with hue='Attrition'
for i, var in enumerate(int_vars):
top_categories = df[var].value_counts().nlargest(10).index
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)]
sns.histplot(data=df, x=var, hue=target, kde=True, ax=axs[i], stat="percent")
axs[i].set_title(var)
# Annotate the subplot with sample size
sample_size = df.shape[0]
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
# Remove any extra empty subplots if needed
if num_cols < len(axs):
for i in range(num_cols, len(axs)):
fig.delaxes(axs[i])
# Adjust spacing between subplots
fig.tight_layout()
plt.xticks(rotation=45)
plot4_path = "static/multiclass_histplot.png"
plt.savefig(plot4_path)
plt.close(fig)
response4 = format_text(generate_gemini_response(plot4_path))
import PIL.Image
# Generate Pairplot
pairplot_fig = sns.pairplot(df)
plot5_path = "static/pair2.png"
pairplot_fig.savefig(plot5_path) # Save the pairplot as a PNG file
response5 = format_text(generate_gemini_response(plot5_path))
plot1_path = generate_plot(df, 'static/plot1.png', 'countplot')
plot2_path = generate_plot(df, 'static/plot2.png', 'histplot')
response1 = format_text((generate_gemini_response(plot1_path)))
response2 = format_text((generate_gemini_response(plot2_path)))
from sklearn import preprocessing
for col in df.select_dtypes(include=['object']).columns:
# Initialize a LabelEncoder object
label_encoder = preprocessing.LabelEncoder()
# Fit the encoder to the unique values in the column
label_encoder.fit(df[col].unique())
# Transform the column using the encoder
df[col] = label_encoder.transform(df[col])
# Display Correlation Heatmap
plot7_path = "static/correlation_matrix.png"
fig, ax = plt.subplots(figsize=(30, 24))
correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', ax=ax)
plt.savefig(plot7_path)
plt.close(fig)
img = PIL.Image.open(plot7_path)
response7 = format_text((generate_gemini_response(plot7_path)))
X = df.drop(target, axis=1)
y = df[target]
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2,random_state=0)
from scipy import stats
threshold = 3
for col in X_train.columns:
if X_train[col].nunique() > 20:
# Calculate Z-scores for the column
z_scores = np.abs(stats.zscore(X_train[col]))
# Find and remove outliers based on the threshold
outlier_indices = np.where(z_scores > threshold)[0]
X_train = X_train.drop(X_train.index[outlier_indices])
y_train = y_train.drop(y_train.index[outlier_indices])
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
from sklearn.metrics import mean_absolute_percentage_error
import math
if algorithm == "Decision Tree":
if method == "Regression":
dtree = DecisionTreeRegressor()
param_grid = {
'max_depth': [4, 6, 8],
'min_samples_split': [4, 6, 8],
'min_samples_leaf': [1, 2, 3, 4],
'random_state': [0, 42],
'max_features': ['auto', 'sqrt', 'log2']
}
grid_search = GridSearchCV(dtree, param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
dtree = DecisionTreeRegressor(**best_params)
dtree.fit(X_train, y_train)
y_pred = dtree.predict(X_test)
mae = metrics.mean_absolute_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = np.sqrt(mse)
# Feature importance visualization
imp_df = pd.DataFrame({
"Feature Name": X_train.columns,
"Importance": dtree.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
ax.set_title('Top 10 Feature Importance (Decision Tree Regressor)', fontsize=18)
plot8_path = "static/dtree_regressor.png"
plt.savefig(plot8_path)
img = PIL.Image.open(plot8_path)
response8 = format_text((generate_gemini_response(plot8_path)))
elif method == "Classification":
dtree = DecisionTreeClassifier()
param_grid = {
'max_depth': [3, 4, 5, 6, 7],
'min_samples_split': [2, 3, 4],
'min_samples_leaf': [1, 2, 3],
'random_state': [0, 42]
}
grid_search = GridSearchCV(dtree, param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
dtree = DecisionTreeClassifier(**best_params)
dtree.fit(X_train, y_train)
y_pred = dtree.predict(X_test)
acc = metrics.accuracy_score(y_test, y_pred)
f1 = metrics.f1_score(y_test, y_pred, average='micro')
prec = metrics.precision_score(y_test, y_pred, average='micro')
recall = metrics.recall_score(y_test, y_pred, average='micro')
# Feature importance visualization
imp_df = pd.DataFrame({
"Feature Name": X_train.columns,
"Importance": dtree.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
ax.set_title('Top 10 Feature Importance (Decision Tree Classifier)', fontsize=18)
plot9_path = "static/dtree_classifier.png"
plt.savefig(plot9_path)
img = PIL.Image.open(plot9_path)
response9 = format_text((generate_gemini_response(plot9_path)))
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
if algorithm == "Random Forest":
if method == "Regression":
rf = RandomForestRegressor()
param_grid = {
'max_depth': [4, 6, 8],
'random_state': [0, 42],
'max_features': ['auto', 'sqrt', 'log2']
}
grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
rf = RandomForestRegressor(**best_params)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
mae = metrics.mean_absolute_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = np.sqrt(mse)
# Feature importance visualization
imp_df = pd.DataFrame({
"Feature Name": X_train.columns,
"Importance": rf.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
ax.set_title('Top 10 Feature Importance (Random Forest Regressor)', fontsize=18)
plot10_path = "static/rf_regressor.png"
plt.savefig(plot10_path)
img = PIL.Image.open(plot10_path)
response10 = format_text((generate_gemini_response(plot10_path)))
elif method == "Classification":
rf = RandomForestClassifier()
param_grid = {
'max_depth': [3, 4, 5, 6],
'random_state': [0, 42]
}
grid_search = GridSearchCV(rf, param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
rf = RandomForestClassifier(**best_params)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
acc = metrics.accuracy_score(y_test, y_pred)
f1 = metrics.f1_score(y_test, y_pred, average='micro')
prec = metrics.precision_score(y_test, y_pred, average='micro')
recall = metrics.recall_score(y_test, y_pred, average='micro')
# Feature importance visualization
imp_df = pd.DataFrame({
"Feature Name": X_train.columns,
"Importance": rf.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
fig, ax = plt.subplots(figsize=(10, 8))
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
ax.set_title('Top 10 Feature Importance (Random Forest Classifier)', fontsize=18)
plot11_path = "static/rf_classifier.png"
plt.savefig(plot11_path)
img = PIL.Image.open(plot11_path)
response11 = format_text((generate_gemini_response(plot11_path)))
document_analyzed = True
data = {
"request": request,
"response1": response1,
"response2": response2,
"response5": response5,
"response7": response7,
"plot1_path": plot1_path,
"plot2_path": plot2_path,
"plot5_path": plot5_path,
"plot7_path": plot7_path,
"show_conversation": document_analyzed,
"question_responses": question_responses
}
# Conditionally include response3 and plot3_path if they exist
if response3:
data["response3"] = response3
if plot3_path:
data["plot3_path"] = plot3_path
if response4:
data["response4"] = response3
if plot4_path:
data["plot4_path"] = plot4_path
if response6:
data["response6"] = response6
if plot6_path:
data["plot6_path"] = plot6_path
if response8:
data["response8"] = response8
if plot8_path:
data["plot8_path"] = plot8_path
if response9:
data["response9"] = response9
if plot9_path:
data["plot9_path"] = plot9_path
if response10:
data["response10"] = response10
if plot10_path:
data["plot10_path"] = plot10_path
if response11:
data["response11"] = response11
if plot11_path:
data["plot11_path"] = plot11_path
return templates.TemplateResponse("upload.html", data)
# Route for asking questions
@app.post("/ask", response_class=HTMLResponse)
async def ask_question(request: Request, question: str = Form(...)):
global file_extension, question_responses, api
global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
global document_analyzed
# Check if a file has been uploaded
if not file_extension:
raise HTTPException(status_code=400, detail="No file has been uploaded yet.")
# Initialize the LLM model
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=api)
# Determine the file extension and select the appropriate loader
file_path = ''
loader = None
if file_extension.endswith('.csv'):
file_path = 'dataset.csv'
loader = UnstructuredCSVLoader(file_path, mode="elements")
elif file_extension.endswith('.xlsx'):
file_path = 'dataset.xlsx'
loader = UnstructuredExcelLoader(file_path, mode="elements")
else:
raise HTTPException(status_code=400, detail="Unsupported file format")
# Load and process the document
try:
docs = loader.load()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}")
# Combine document text
text = "\n".join([doc.page_content for doc in docs])
os.environ["GOOGLE_API_KEY"] = api
# Initialize embeddings and create FAISS vector store
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
document_search = FAISS.from_texts(chunks, embeddings)
# Generate query embedding and perform similarity search
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=3)
if results:
retrieved_texts = " ".join([result.page_content for result in results])
# Define the Summarize Chain for the question
latest_response = "" if not question_responses else question_responses[-1][1]
template1 = (
f"{question} Answer the question based on the following:\n\"{text}\"\n:" +
(f" Answer the Question with only 3 sentences. Latest conversation: {latest_response}" if latest_response else "")
)
prompt1 = PromptTemplate.from_template(template1)
# Initialize the LLMChain with the prompt
llm_chain1 = LLMChain(llm=llm, prompt=prompt1)
# Invoke the chain to get the summary
try:
response_chain = llm_chain1.invoke({"text": text})
summary1 = response_chain["text"]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}")
# Generate embeddings for the summary
try:
summary_embedding = embeddings.embed_query(summary1)
document_search = FAISS.from_texts([summary1], embeddings)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}")
# Perform a search on the FAISS vector database
try:
if document_search:
query_embedding = embeddings.embed_query(question)
results = document_search.similarity_search_by_vector(query_embedding, k=1)
if results:
current_response = format_text(results[0].page_content)
else:
current_response = "No matching document found in the database."
else:
current_response = "Vector database not initialized."
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}")
else:
current_response = "No relevant results found."
# Append the question and response from FAISS search
current_question = f"You asked: {question}"
question_responses.append((current_question, current_response))
# Save all results to output_summary.json
save_to_json(question_responses)
data = {
"request": request,
"response1": response1,
"response2": response2,
"response5": response5,
"response7": response7,
"plot1_path": plot1_path,
"plot2_path": plot2_path,
"plot5_path": plot5_path,
"plot7_path": plot7_path,
"show_conversation": True,
"question_responses": question_responses
}
# Conditionally include response3 and plot3_path if they exist
if response3:
data["response3"] = response3
if plot3_path:
data["plot3_path"] = plot3_path
if response4:
data["response4"] = response3
if plot4_path:
data["plot4_path"] = plot4_path
if response6:
data["response6"] = response6
if plot6_path:
data["plot6_path"] = plot6_path
if response8:
data["response8"] = response8
if plot8_path:
data["plot8_path"] = plot8_path
if response9:
data["response9"] = response9
if plot9_path:
data["plot9_path"] = plot9_path
if response10:
data["response10"] = response10
if plot10_path:
data["plot10_path"] = plot10_path
if response11:
data["response11"] = response11
if plot11_path:
data["plot11_path"] = plot11_path
return templates.TemplateResponse("upload.html", data)
def save_to_json(question_responses):
outputs = {
"question_responses": question_responses
}
with open("output_summary.json", "w") as outfile:
json.dump(outputs, outfile)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)
|