File size: 30,410 Bytes
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
32aab7e
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
3afab17
2f69b10
5ee5727
 
 
 
 
 
 
 
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
5ee5727
2f69b10
 
 
 
 
5ee5727
2f69b10
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
2f69b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee5727
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import numpy as np
import google.generativeai as genai
from PIL import Image
from werkzeug.utils import secure_filename
import os
import json
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
from typing import List
import textwrap
from IPython.display import display, Markdown
from PIL import Image
import shutil
from werkzeug.utils import secure_filename
import urllib.parse
import re
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
import PIL.Image

app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")

sns.set_theme(color_codes=True)
uploaded_df = None
document_analyzed = False
question_responses = []


def format_text(text):
    # Replace **text** with <b>text</b>
    text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
    # Replace any remaining * with <br>
    text = text.replace('*', '<br>')
    return text

def clean_data(df):
    # Step 1: Clean currency-related columns
    for col in df.columns:
        if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']):
            if df[col].dtype == 'object':
                df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float)
    
    # Step 2: Drop columns with more than 25% missing values
    null_percentage = df.isnull().sum() / len(df)
    columns_to_drop = null_percentage[null_percentage > 0.25].index
    df.drop(columns=columns_to_drop, inplace=True)
    
    # Step 3: Fill missing values for remaining columns
    for col in df.columns:
        if df[col].isnull().sum() > 0:
            if null_percentage[col] <= 0.25:
                if df[col].dtype in ['float64', 'int64']:
                    median_value = df[col].median()
                    df[col].fillna(median_value, inplace=True)
    
    # Step 4: Convert object-type columns to lowercase
    for col in df.columns:
        if df[col].dtype == 'object':
            df[col] = df[col].str.lower()

    # Step 5: Drop columns with only one unique value
    unique_value_columns = [col for col in df.columns if df[col].nunique() == 1]
    df.drop(columns=unique_value_columns, inplace=True)

    return df




def clean_data2(df):
    for col in df.columns:
        if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col:
            if df[col].dtype == 'object':
                df[col] = df[col].str.replace('$', '')
                df[col] = df[col].str.replace('£', '')
                df[col] = df[col].str.replace('€', '')
                df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float)

    null_percentage = df.isnull().sum() / len(df)

    for col in df.columns:
        if df[col].isnull().sum() > 0:
            if null_percentage[col] <= 0.25:
                if df[col].dtype in ['float64', 'int64']:
                    median_value = df[col].median()
                    df[col].fillna(median_value, inplace=True)

    for col in df.columns:
        if df[col].dtype == 'object':
            df[col] = df[col].str.lower()

    return df



def generate_plot(df, plot_path, plot_type):
    df = clean_data(df)
    excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"]

    if plot_type == 'countplot':
        cat_vars = [col for col in df.select_dtypes(include='object').columns 
                    if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1]
        
        for col in cat_vars:
            if df[col].nunique() > 10:
                top_categories = df[col].value_counts().index[:10]
                df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other')

        num_cols = len(cat_vars)
        num_rows = (num_cols + 1) // 2
        fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows))
        axs = axs.flatten()

        for i, var in enumerate(cat_vars):
            category_counts = df[var].value_counts()
            top_values = category_counts.index[:10][::-1]
            filtered_df = df.copy()
            filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True)
            sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i])
            axs[i].set_title(var)
            axs[i].tick_params(axis='x', rotation=30)
            
            total = len(filtered_df[var])
            for p in axs[i].patches:
                height = p.get_height()
                axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom')

            sample_size = filtered_df.shape[0]
            

        for i in range(num_cols, len(axs)):
            fig.delaxes(axs[i])

    elif plot_type == 'histplot':
        num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns
                    if all(word not in col.lower() for word in excluded_words)]
        num_cols = len(num_vars)
        num_rows = (num_cols + 2) // 3
        fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows))
        axs = axs.flatten()

        plot_index = 0

        for i, var in enumerate(num_vars):
            if len(df[var].unique()) == len(df):
                fig.delaxes(axs[plot_index])
            else:
                sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent")
                axs[plot_index].set_title(var)
                axs[plot_index].set_xlabel('')

            sample_size = df.shape[0]
            

            plot_index += 1

        for i in range(plot_index, len(axs)):
            fig.delaxes(axs[i])

    fig.tight_layout()
    fig.savefig(plot_path)
    plt.close(fig)
    return plot_path


@app.get("/", response_class=HTMLResponse)
async def read_form(request: Request):
    return templates.TemplateResponse("upload.html", {"request": request})

@app.post("/process", response_class=HTMLResponse)
async def process_file(request: Request, file: UploadFile = File(...)):
    global df, uploaded_file, document_analyzed, file_path, file_extension
    uploaded_file = file
    file_location = f"static/{file.filename}"
    
    # Save the uploaded file to the server
    with open(file_location, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)

    # Load DataFrame based on file type
    file_extension = os.path.splitext(file.filename)[1]
    if file_extension == '.csv':
        file_path = 'dataset.csv'
        df = pd.read_csv(file_location, delimiter=",")
        df.to_csv(file_path, index=False)  # Save as dataset.csv
    elif file_extension == '.xlsx':
        file_path = 'dataset.xlsx'
        df = pd.read_excel(file_location)
        df.to_excel(file_path, index=False)  # Save as dataset.xlsx
    else:
        raise HTTPException(status_code=415, detail="Unsupported file format")

    # Get columns of the DataFrame
    columns = df.columns.tolist()

    return templates.TemplateResponse("upload.html", {"request": request, "columns": columns})


@app.post("/result")
async def result(request: Request,  
                 target: str = Form(...),
                 question: str = Form(...),
                 algorithm: str = Form(...)):
    global df, api
    global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
    global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11


    api = "AIzaSyBqYpSLeY5lIzo11DQAL20QLG1Slr4MjIU"
    excluded_words = ["name", "postal", "date", "phone", "address", "id"]

    def generate_gemini_response(plot_path):
        genai.configure(api_key=api)
        model = genai.GenerativeModel('gemini-1.5-flash-latest')
        img = Image.open(plot_path)
        response = model.generate_content([question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights.", img])
        response.resolve()
        return response.text
    
    if df[target].dtype in ['float64', 'int64']:
        unique_values = df[target].nunique()

        # If unique values > 20, treat it as regression, else classification
        if unique_values > 20:
            method = "Regression"
        else:
            method = "Classification"
    else:
        # If the target is not numeric, treat it as classification
        method = "Classification"



    # Initialize response3 and plot3_path to None
    response3 = None
    plot3_path = None
    response4 = None
    plot4_path = None
    response6 = None
    plot6_path = None
    response8 = None  # Initialize response8
    plot8_path = None  # Initialize plot8_path
    response9 = None  # Initialize response9
    plot9_path = None  # Initialize plot9_path
    response10 = None  # Initialize response8
    plot10_path = None  # Initialize plot8_path
    response11 = None  # Initialize response9
    plot11_path = None  # Initialize plot9_path

    if method == "Classification":
        cat_vars = [col for col in df.select_dtypes(include=['object']).columns 
                        if all(word not in col.lower() for word in excluded_words)]

        # Exclude the target variable from the list if it exists in cat_vars
        if target in cat_vars:
            cat_vars.remove(target)

        # Create a figure with subplots, but only include the required number of subplots
        num_cols = len(cat_vars)
        num_rows = (num_cols + 2) // 3  # To make sure there are enough rows for the subplots
        fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
        axs = axs.flatten()

        # Create a count plot for each categorical variable
        for i, var in enumerate(cat_vars):
            top_categories = df[var].value_counts().nlargest(5).index
            filtered_df = df[df[var].notnull() & df[var].isin(top_categories)]  # Exclude rows with NaN values in the variable
                    
            # Replace less frequent categories with "Other" if there are more than 5 unique values
            if df[var].nunique() > 5:
                other_categories = df[var].value_counts().index[5:]
                filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other')
                    
            sns.countplot(x=var, hue=target, stat="percent", data=filtered_df, ax=axs[i])
            axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45)
                    
            # Change y-axis label to represent percentage
            axs[i].set_ylabel('Percentage')

            # Annotate the subplot with sample size
            sample_size = df.shape[0]
            axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')

        # Remove any remaining blank subplots
        for i in range(num_cols, len(axs)):
            fig.delaxes(axs[i])

        plt.xticks(rotation=45)
        plt.tight_layout()
        plot3_path = "static/multiclass_barplot.png"
        plt.savefig(plot3_path)
        plt.close(fig)

        response3 = format_text(generate_gemini_response(plot3_path))


    if method == "Classification":
        # Generate Multiclass Pairplot
        pairplot_fig = sns.pairplot(df, hue=target)
        plot6_path = "static/pair1.png"  # Use plot6_path
        pairplot_fig.savefig(plot6_path)  # Save the pairplot as a PNG file
        

        response6 = format_text(generate_gemini_response(plot6_path))
        

    if method == "Classification":
        # Multiclass Histplot
        # Get the names of all columns with data type 'object' (categorical columns)
        cat_cols = df.columns.tolist()

        # Get the names of all columns with data type 'int'
        int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist()
        int_vars = [col for col in int_vars if col != target]

        # Create a figure with subplots
        num_cols = len(int_vars)
        num_rows = (num_cols + 2) // 3  # To make sure there are enough rows for the subplots
        fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
        axs = axs.flatten()

        # Create a histogram for each integer variable with hue='Attrition'
        for i, var in enumerate(int_vars):
            top_categories = df[var].value_counts().nlargest(10).index
            filtered_df = df[df[var].notnull() & df[var].isin(top_categories)]
            sns.histplot(data=df, x=var, hue=target, kde=True, ax=axs[i], stat="percent")
            axs[i].set_title(var)

            # Annotate the subplot with sample size
            sample_size = df.shape[0]
            axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')

        # Remove any extra empty subplots if needed
        if num_cols < len(axs):
            for i in range(num_cols, len(axs)):
                fig.delaxes(axs[i])

        # Adjust spacing between subplots
        fig.tight_layout()
        plt.xticks(rotation=45)
        plot4_path = "static/multiclass_histplot.png"
        plt.savefig(plot4_path)
        plt.close(fig)

        response4 = format_text(generate_gemini_response(plot4_path))




    import PIL.Image
    # Generate Pairplot
    pairplot_fig = sns.pairplot(df)
    plot5_path = "static/pair2.png"  
    pairplot_fig.savefig(plot5_path)  # Save the pairplot as a PNG file

    response5 = format_text(generate_gemini_response(plot5_path))

    

    plot1_path = generate_plot(df, 'static/plot1.png', 'countplot')
    plot2_path = generate_plot(df, 'static/plot2.png', 'histplot')

    response1 = format_text((generate_gemini_response(plot1_path)))
    response2 = format_text((generate_gemini_response(plot2_path)))

    from sklearn import preprocessing
    for col in df.select_dtypes(include=['object']).columns:
    
        # Initialize a LabelEncoder object
        label_encoder = preprocessing.LabelEncoder()
    
        # Fit the encoder to the unique values in the column
        label_encoder.fit(df[col].unique())
    
        # Transform the column using the encoder
        df[col] = label_encoder.transform(df[col])

    
    # Display Correlation Heatmap
    plot7_path = "static/correlation_matrix.png"
    fig, ax = plt.subplots(figsize=(30, 24))
    correlation_matrix = df.corr()
    sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', ax=ax)
    plt.savefig(plot7_path)
    plt.close(fig)

    img = PIL.Image.open(plot7_path)
    response7 = format_text((generate_gemini_response(plot7_path)))





    X = df.drop(target, axis=1)
    y = df[target]
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2,random_state=0)

    from scipy import stats
    threshold = 3

    for col in X_train.columns:
        if X_train[col].nunique() > 20:
            # Calculate Z-scores for the column
            z_scores = np.abs(stats.zscore(X_train[col]))
            # Find and remove outliers based on the threshold
            outlier_indices = np.where(z_scores > threshold)[0]
            X_train = X_train.drop(X_train.index[outlier_indices])
            y_train = y_train.drop(y_train.index[outlier_indices])




    from sklearn.tree import DecisionTreeRegressor
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn import metrics
    from sklearn.metrics import mean_absolute_percentage_error
    import math


    if algorithm == "Decision Tree":

        if method == "Regression":
            dtree = DecisionTreeRegressor()
            param_grid = {
                'max_depth': [4, 6, 8],
                'min_samples_split': [4, 6, 8],
                'min_samples_leaf': [1, 2, 3, 4],
                'random_state': [0, 42],
                'max_features': ['auto', 'sqrt', 'log2']
            }
            grid_search = GridSearchCV(dtree, param_grid, cv=5, scoring='neg_mean_squared_error')
            grid_search.fit(X_train, y_train)
            best_params = grid_search.best_params_
            dtree = DecisionTreeRegressor(**best_params)
            dtree.fit(X_train, y_train)

            y_pred = dtree.predict(X_test)
            mae = metrics.mean_absolute_error(y_test, y_pred)
            mse = metrics.mean_squared_error(y_test, y_pred)
            r2 = metrics.r2_score(y_test, y_pred)
            rmse = np.sqrt(mse)

            # Feature importance visualization
            imp_df = pd.DataFrame({
                "Feature Name": X_train.columns,
                "Importance": dtree.feature_importances_
            })
            fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
            fig, ax = plt.subplots(figsize=(10, 8))
            sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
            ax.set_title('Top 10 Feature Importance (Decision Tree Regressor)', fontsize=18)
            plot8_path = "static/dtree_regressor.png"
            plt.savefig(plot8_path)
            img = PIL.Image.open(plot8_path)
            response8 = format_text((generate_gemini_response(plot8_path)))
            

        elif method == "Classification":
            dtree = DecisionTreeClassifier()
            param_grid = {
                'max_depth': [3, 4, 5, 6, 7],
                'min_samples_split': [2, 3, 4],
                'min_samples_leaf': [1, 2, 3],
                'random_state': [0, 42]
            }
            grid_search = GridSearchCV(dtree, param_grid, cv=5)
            grid_search.fit(X_train, y_train)
            best_params = grid_search.best_params_
            dtree = DecisionTreeClassifier(**best_params)
            dtree.fit(X_train, y_train)

            y_pred = dtree.predict(X_test)
            acc = metrics.accuracy_score(y_test, y_pred)
            f1 = metrics.f1_score(y_test, y_pred, average='micro')
            prec = metrics.precision_score(y_test, y_pred, average='micro')
            recall = metrics.recall_score(y_test, y_pred, average='micro')

            # Feature importance visualization
            imp_df = pd.DataFrame({
                "Feature Name": X_train.columns,
                "Importance": dtree.feature_importances_
            })
            fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
            fig, ax = plt.subplots(figsize=(10, 8))
            sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
            ax.set_title('Top 10 Feature Importance (Decision Tree Classifier)', fontsize=18)
            plot9_path = "static/dtree_classifier.png"
            plt.savefig(plot9_path)
            img = PIL.Image.open(plot9_path)
            response9 = format_text((generate_gemini_response(plot9_path)))

        

    from sklearn.ensemble import RandomForestRegressor
    from sklearn.ensemble import RandomForestClassifier

    if algorithm == "Random Forest":

        if method == "Regression":
            rf = RandomForestRegressor()
            param_grid = {
                'max_depth': [4, 6, 8],                
                'random_state': [0, 42],
                'max_features': ['auto', 'sqrt', 'log2']
            }
            grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='neg_mean_squared_error')
            grid_search.fit(X_train, y_train)
            best_params = grid_search.best_params_
            rf = RandomForestRegressor(**best_params)
            rf.fit(X_train, y_train)

            y_pred = rf.predict(X_test)
            mae = metrics.mean_absolute_error(y_test, y_pred)
            mse = metrics.mean_squared_error(y_test, y_pred)
            r2 = metrics.r2_score(y_test, y_pred)
            rmse = np.sqrt(mse)

            # Feature importance visualization
            imp_df = pd.DataFrame({
                "Feature Name": X_train.columns,
                "Importance": rf.feature_importances_
            })
            fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
            fig, ax = plt.subplots(figsize=(10, 8))
            sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
            ax.set_title('Top 10 Feature Importance (Random Forest Regressor)', fontsize=18)
            plot10_path = "static/rf_regressor.png"
            plt.savefig(plot10_path)
            img = PIL.Image.open(plot10_path)
            response10 = format_text((generate_gemini_response(plot10_path)))

        elif method == "Classification":
            rf = RandomForestClassifier()
            param_grid = {               
                'max_depth': [3, 4, 5, 6],
                'random_state': [0, 42]
            }
            grid_search = GridSearchCV(rf, param_grid, cv=5)
            grid_search.fit(X_train, y_train)
            best_params = grid_search.best_params_
            rf = RandomForestClassifier(**best_params)
            rf.fit(X_train, y_train)

            y_pred = rf.predict(X_test)
            acc = metrics.accuracy_score(y_test, y_pred)
            f1 = metrics.f1_score(y_test, y_pred, average='micro')
            prec = metrics.precision_score(y_test, y_pred, average='micro')
            recall = metrics.recall_score(y_test, y_pred, average='micro')

            # Feature importance visualization
            imp_df = pd.DataFrame({
                "Feature Name": X_train.columns,
                "Importance": rf.feature_importances_
            })
            fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
            fig, ax = plt.subplots(figsize=(10, 8))
            sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
            ax.set_title('Top 10 Feature Importance (Random Forest Classifier)', fontsize=18)
            plot11_path = "static/rf_classifier.png"
            plt.savefig(plot11_path)
            img = PIL.Image.open(plot11_path)
            response11 = format_text((generate_gemini_response(plot11_path)))



    document_analyzed = True

    

    data = {
        "request": request,
        "response1": response1,
        "response2": response2,
        "response5": response5,
        "response7": response7,
        "plot1_path": plot1_path,
        "plot2_path": plot2_path,
        "plot5_path": plot5_path,
        "plot7_path": plot7_path,
        "show_conversation": document_analyzed,
        "question_responses": question_responses
    }

    # Conditionally include response3 and plot3_path if they exist
    if response3:
        data["response3"] = response3
    if plot3_path:
        data["plot3_path"] = plot3_path
    if response4:
        data["response4"] = response3
    if plot4_path:
        data["plot4_path"] = plot4_path
    if response6:
        data["response6"] = response6
    if plot6_path:
        data["plot6_path"] = plot6_path
    if response8:
        data["response8"] = response8
    if plot8_path:
        data["plot8_path"] = plot8_path
    if response9:
        data["response9"] = response9
    if plot9_path:
        data["plot9_path"] = plot9_path
    if response10:
        data["response10"] = response10
    if plot10_path:
        data["plot10_path"] = plot10_path
    if response11:
        data["response11"] = response11
    if plot11_path:
        data["plot11_path"] = plot11_path

    return templates.TemplateResponse("upload.html", data)




# Route for asking questions
@app.post("/ask", response_class=HTMLResponse)
async def ask_question(request: Request, question: str = Form(...)):
    global file_extension, question_responses, api
    global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
    global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
    global document_analyzed

    # Check if a file has been uploaded
    if not file_extension:
        raise HTTPException(status_code=400, detail="No file has been uploaded yet.")

    # Initialize the LLM model
    llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=api)

    # Determine the file extension and select the appropriate loader
    file_path = ''
    loader = None

    if file_extension.endswith('.csv'):
        file_path = 'dataset.csv'
        loader = UnstructuredCSVLoader(file_path, mode="elements")
    elif file_extension.endswith('.xlsx'):
        file_path = 'dataset.xlsx'
        loader = UnstructuredExcelLoader(file_path, mode="elements")
    else:
        raise HTTPException(status_code=400, detail="Unsupported file format")

    # Load and process the document
    try:
        docs = loader.load()
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}")

    # Combine document text
    text = "\n".join([doc.page_content for doc in docs])
    os.environ["GOOGLE_API_KEY"] = api

    # Initialize embeddings and create FAISS vector store
    embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    chunks = text_splitter.split_text(text)
    document_search = FAISS.from_texts(chunks, embeddings)

    # Generate query embedding and perform similarity search
    query_embedding = embeddings.embed_query(question)
    results = document_search.similarity_search_by_vector(query_embedding, k=3)

    if results:
        retrieved_texts = " ".join([result.page_content for result in results])

        # Define the Summarize Chain for the question
        latest_response = "" if not question_responses else question_responses[-1][1]
        template1 = (
            f"{question} Answer the question based on the following:\n\"{text}\"\n:" +
            (f" Answer the Question with only 3 sentences. Latest conversation: {latest_response}" if latest_response else "")
        )
        prompt1 = PromptTemplate.from_template(template1)

        # Initialize the LLMChain with the prompt
        llm_chain1 = LLMChain(llm=llm, prompt=prompt1)

        # Invoke the chain to get the summary
        try:
            response_chain = llm_chain1.invoke({"text": text})
            summary1 = response_chain["text"]
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}")

        # Generate embeddings for the summary
        try:
            summary_embedding = embeddings.embed_query(summary1)
            document_search = FAISS.from_texts([summary1], embeddings)
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}")

        # Perform a search on the FAISS vector database
        try:
            if document_search:
                query_embedding = embeddings.embed_query(question)
                results = document_search.similarity_search_by_vector(query_embedding, k=1)

                if results:
                    current_response = format_text(results[0].page_content)
                else:
                    current_response = "No matching document found in the database."
            else:
                current_response = "Vector database not initialized."
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}")
    else:
        current_response = "No relevant results found."

    # Append the question and response from FAISS search
    current_question = f"You asked: {question}"
    question_responses.append((current_question, current_response))

    # Save all results to output_summary.json
    save_to_json(question_responses)

    

    data = {
        "request": request,
        "response1": response1,
        "response2": response2,
        "response5": response5,
        "response7": response7,
        "plot1_path": plot1_path,
        "plot2_path": plot2_path,
        "plot5_path": plot5_path,
        "plot7_path": plot7_path,
        "show_conversation": True,
        "question_responses": question_responses
    }

    # Conditionally include response3 and plot3_path if they exist
    if response3:
        data["response3"] = response3
    if plot3_path:
        data["plot3_path"] = plot3_path
    if response4:
        data["response4"] = response3
    if plot4_path:
        data["plot4_path"] = plot4_path
    if response6:
        data["response6"] = response6
    if plot6_path:
        data["plot6_path"] = plot6_path
    if response8:
        data["response8"] = response8
    if plot8_path:
        data["plot8_path"] = plot8_path
    if response9:
        data["response9"] = response9
    if plot9_path:
        data["plot9_path"] = plot9_path
    if response10:
        data["response10"] = response10
    if plot10_path:
        data["plot10_path"] = plot10_path
    if response11:
        data["response11"] = response11
    if plot11_path:
        data["plot11_path"] = plot11_path

    return templates.TemplateResponse("upload.html", data)



def save_to_json(question_responses):
    outputs = {
        "question_responses": question_responses
    }
    with open("output_summary.json", "w") as outfile:
        json.dump(outputs, outfile)



if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="127.0.0.1", port=8000)