import pandas as pd import seaborn as sns import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import numpy as np import google.generativeai as genai from PIL import Image from werkzeug.utils import secure_filename import os import json from fastapi import FastAPI, File, UploadFile, Form, HTTPException from fastapi.responses import HTMLResponse, FileResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from starlette.requests import Request from typing import List import textwrap from IPython.display import display, Markdown from PIL import Image import shutil from werkzeug.utils import secure_filename import urllib.parse import re from langchain_google_genai import ChatGoogleGenerativeAI from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.vectorstores import FAISS from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain.text_splitter import CharacterTextSplitter import PIL.Image app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="templates") sns.set_theme(color_codes=True) uploaded_df = None document_analyzed = False question_responses = [] def format_text(text): # Replace **text** with text text = re.sub(r'\*\*(.*?)\*\*', r'\1', text) # Replace any remaining * with
text = text.replace('*', '
') return text def clean_data(df): # Step 1: Clean currency-related columns for col in df.columns: if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']): if df[col].dtype == 'object': df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float) # Step 2: Drop columns with more than 25% missing values null_percentage = df.isnull().sum() / len(df) columns_to_drop = null_percentage[null_percentage > 0.25].index df.drop(columns=columns_to_drop, inplace=True) # Step 3: Fill missing values for remaining columns for col in df.columns: if df[col].isnull().sum() > 0: if null_percentage[col] <= 0.25: if df[col].dtype in ['float64', 'int64']: median_value = df[col].median() df[col].fillna(median_value, inplace=True) # Step 4: Convert object-type columns to lowercase for col in df.columns: if df[col].dtype == 'object': df[col] = df[col].str.lower() # Step 5: Drop columns with only one unique value unique_value_columns = [col for col in df.columns if df[col].nunique() == 1] df.drop(columns=unique_value_columns, inplace=True) return df def clean_data2(df): for col in df.columns: if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col: if df[col].dtype == 'object': df[col] = df[col].str.replace('$', '') df[col] = df[col].str.replace('£', '') df[col] = df[col].str.replace('€', '') df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float) null_percentage = df.isnull().sum() / len(df) for col in df.columns: if df[col].isnull().sum() > 0: if null_percentage[col] <= 0.25: if df[col].dtype in ['float64', 'int64']: median_value = df[col].median() df[col].fillna(median_value, inplace=True) for col in df.columns: if df[col].dtype == 'object': df[col] = df[col].str.lower() return df def generate_plot(df, plot_path, plot_type): df = clean_data(df) excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"] if plot_type == 'countplot': cat_vars = [col for col in df.select_dtypes(include='object').columns if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1] for col in cat_vars: if df[col].nunique() > 10: top_categories = df[col].value_counts().index[:10] df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other') num_cols = len(cat_vars) num_rows = (num_cols + 1) // 2 fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows)) axs = axs.flatten() for i, var in enumerate(cat_vars): category_counts = df[var].value_counts() top_values = category_counts.index[:10][::-1] filtered_df = df.copy() filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True) sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i]) axs[i].set_title(var) axs[i].tick_params(axis='x', rotation=30) total = len(filtered_df[var]) for p in axs[i].patches: height = p.get_height() axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom') sample_size = filtered_df.shape[0] for i in range(num_cols, len(axs)): fig.delaxes(axs[i]) elif plot_type == 'histplot': num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns if all(word not in col.lower() for word in excluded_words)] num_cols = len(num_vars) num_rows = (num_cols + 2) // 3 fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows)) axs = axs.flatten() plot_index = 0 for i, var in enumerate(num_vars): if len(df[var].unique()) == len(df): fig.delaxes(axs[plot_index]) else: sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent") axs[plot_index].set_title(var) axs[plot_index].set_xlabel('') sample_size = df.shape[0] plot_index += 1 for i in range(plot_index, len(axs)): fig.delaxes(axs[i]) fig.tight_layout() fig.savefig(plot_path) plt.close(fig) return plot_path @app.get("/", response_class=HTMLResponse) async def read_form(request: Request): return templates.TemplateResponse("upload.html", {"request": request}) @app.post("/process", response_class=HTMLResponse) async def process_file(request: Request, file: UploadFile = File(...)): global df, uploaded_file, document_analyzed, file_path, file_extension uploaded_file = file file_location = f"static/{file.filename}" # Save the uploaded file to the server with open(file_location, "wb") as buffer: shutil.copyfileobj(file.file, buffer) # Load DataFrame based on file type file_extension = os.path.splitext(file.filename)[1] if file_extension == '.csv': file_path = 'dataset.csv' df = pd.read_csv(file_location, delimiter=",") df.to_csv(file_path, index=False) # Save as dataset.csv elif file_extension == '.xlsx': file_path = 'dataset.xlsx' df = pd.read_excel(file_location) df.to_excel(file_path, index=False) # Save as dataset.xlsx else: raise HTTPException(status_code=415, detail="Unsupported file format") # Get columns of the DataFrame columns = df.columns.tolist() return templates.TemplateResponse("upload.html", {"request": request, "columns": columns}) @app.post("/result") async def result(request: Request, target: str = Form(...), question: str = Form(...), algorithm: str = Form(...)): global df, api global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11 api = "AIzaSyBqYpSLeY5lIzo11DQAL20QLG1Slr4MjIU" excluded_words = ["name", "postal", "date", "phone", "address", "id"] def generate_gemini_response(plot_path): genai.configure(api_key=api) model = genai.GenerativeModel('gemini-1.5-flash-latest') img = Image.open(plot_path) response = model.generate_content([question + " As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights.", img]) response.resolve() return response.text if df[target].dtype in ['float64', 'int64']: unique_values = df[target].nunique() # If unique values > 20, treat it as regression, else classification if unique_values > 20: method = "Regression" else: method = "Classification" else: # If the target is not numeric, treat it as classification method = "Classification" # Initialize response3 and plot3_path to None response3 = None plot3_path = None response4 = None plot4_path = None response6 = None plot6_path = None response8 = None # Initialize response8 plot8_path = None # Initialize plot8_path response9 = None # Initialize response9 plot9_path = None # Initialize plot9_path response10 = None # Initialize response8 plot10_path = None # Initialize plot8_path response11 = None # Initialize response9 plot11_path = None # Initialize plot9_path if method == "Classification": cat_vars = [col for col in df.select_dtypes(include=['object']).columns if all(word not in col.lower() for word in excluded_words)] # Exclude the target variable from the list if it exists in cat_vars if target in cat_vars: cat_vars.remove(target) # Create a figure with subplots, but only include the required number of subplots num_cols = len(cat_vars) num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows)) axs = axs.flatten() # Create a count plot for each categorical variable for i, var in enumerate(cat_vars): top_categories = df[var].value_counts().nlargest(5).index filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] # Exclude rows with NaN values in the variable # Replace less frequent categories with "Other" if there are more than 5 unique values if df[var].nunique() > 5: other_categories = df[var].value_counts().index[5:] filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other') sns.countplot(x=var, hue=target, stat="percent", data=filtered_df, ax=axs[i]) axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45) # Change y-axis label to represent percentage axs[i].set_ylabel('Percentage') # Annotate the subplot with sample size sample_size = df.shape[0] axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center') # Remove any remaining blank subplots for i in range(num_cols, len(axs)): fig.delaxes(axs[i]) plt.xticks(rotation=45) plt.tight_layout() plot3_path = "static/multiclass_barplot.png" plt.savefig(plot3_path) plt.close(fig) response3 = format_text(generate_gemini_response(plot3_path)) if method == "Classification": # Generate Multiclass Pairplot pairplot_fig = sns.pairplot(df, hue=target) plot6_path = "static/pair1.png" # Use plot6_path pairplot_fig.savefig(plot6_path) # Save the pairplot as a PNG file response6 = format_text(generate_gemini_response(plot6_path)) if method == "Classification": # Multiclass Histplot # Get the names of all columns with data type 'object' (categorical columns) cat_cols = df.columns.tolist() # Get the names of all columns with data type 'int' int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist() int_vars = [col for col in int_vars if col != target] # Create a figure with subplots num_cols = len(int_vars) num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows)) axs = axs.flatten() # Create a histogram for each integer variable with hue='Attrition' for i, var in enumerate(int_vars): top_categories = df[var].value_counts().nlargest(10).index filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] sns.histplot(data=df, x=var, hue=target, kde=True, ax=axs[i], stat="percent") axs[i].set_title(var) # Annotate the subplot with sample size sample_size = df.shape[0] axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center') # Remove any extra empty subplots if needed if num_cols < len(axs): for i in range(num_cols, len(axs)): fig.delaxes(axs[i]) # Adjust spacing between subplots fig.tight_layout() plt.xticks(rotation=45) plot4_path = "static/multiclass_histplot.png" plt.savefig(plot4_path) plt.close(fig) response4 = format_text(generate_gemini_response(plot4_path)) import PIL.Image # Generate Pairplot pairplot_fig = sns.pairplot(df) plot5_path = "static/pair2.png" pairplot_fig.savefig(plot5_path) # Save the pairplot as a PNG file response5 = format_text(generate_gemini_response(plot5_path)) plot1_path = generate_plot(df, 'static/plot1.png', 'countplot') plot2_path = generate_plot(df, 'static/plot2.png', 'histplot') response1 = format_text((generate_gemini_response(plot1_path))) response2 = format_text((generate_gemini_response(plot2_path))) from sklearn import preprocessing for col in df.select_dtypes(include=['object']).columns: # Initialize a LabelEncoder object label_encoder = preprocessing.LabelEncoder() # Fit the encoder to the unique values in the column label_encoder.fit(df[col].unique()) # Transform the column using the encoder df[col] = label_encoder.transform(df[col]) # Display Correlation Heatmap plot7_path = "static/correlation_matrix.png" fig, ax = plt.subplots(figsize=(30, 24)) correlation_matrix = df.corr() sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', ax=ax) plt.savefig(plot7_path) plt.close(fig) img = PIL.Image.open(plot7_path) response7 = format_text((generate_gemini_response(plot7_path))) X = df.drop(target, axis=1) y = df[target] from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2,random_state=0) from scipy import stats threshold = 3 for col in X_train.columns: if X_train[col].nunique() > 20: # Calculate Z-scores for the column z_scores = np.abs(stats.zscore(X_train[col])) # Find and remove outliers based on the threshold outlier_indices = np.where(z_scores > threshold)[0] X_train = X_train.drop(X_train.index[outlier_indices]) y_train = y_train.drop(y_train.index[outlier_indices]) from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn import metrics from sklearn.metrics import mean_absolute_percentage_error import math if algorithm == "Decision Tree": if method == "Regression": dtree = DecisionTreeRegressor() param_grid = { 'max_depth': [4, 6, 8], 'min_samples_split': [4, 6, 8], 'min_samples_leaf': [1, 2, 3, 4], 'random_state': [0, 42], 'max_features': ['auto', 'sqrt', 'log2'] } grid_search = GridSearchCV(dtree, param_grid, cv=5, scoring='neg_mean_squared_error') grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ dtree = DecisionTreeRegressor(**best_params) dtree.fit(X_train, y_train) y_pred = dtree.predict(X_test) mae = metrics.mean_absolute_error(y_test, y_pred) mse = metrics.mean_squared_error(y_test, y_pred) r2 = metrics.r2_score(y_test, y_pred) rmse = np.sqrt(mse) # Feature importance visualization imp_df = pd.DataFrame({ "Feature Name": X_train.columns, "Importance": dtree.feature_importances_ }) fi = imp_df.sort_values(by="Importance", ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 8)) sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax) ax.set_title('Top 10 Feature Importance (Decision Tree Regressor)', fontsize=18) plot8_path = "static/dtree_regressor.png" plt.savefig(plot8_path) img = PIL.Image.open(plot8_path) response8 = format_text((generate_gemini_response(plot8_path))) elif method == "Classification": dtree = DecisionTreeClassifier() param_grid = { 'max_depth': [3, 4, 5, 6, 7], 'min_samples_split': [2, 3, 4], 'min_samples_leaf': [1, 2, 3], 'random_state': [0, 42] } grid_search = GridSearchCV(dtree, param_grid, cv=5) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ dtree = DecisionTreeClassifier(**best_params) dtree.fit(X_train, y_train) y_pred = dtree.predict(X_test) acc = metrics.accuracy_score(y_test, y_pred) f1 = metrics.f1_score(y_test, y_pred, average='micro') prec = metrics.precision_score(y_test, y_pred, average='micro') recall = metrics.recall_score(y_test, y_pred, average='micro') # Feature importance visualization imp_df = pd.DataFrame({ "Feature Name": X_train.columns, "Importance": dtree.feature_importances_ }) fi = imp_df.sort_values(by="Importance", ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 8)) sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax) ax.set_title('Top 10 Feature Importance (Decision Tree Classifier)', fontsize=18) plot9_path = "static/dtree_classifier.png" plt.savefig(plot9_path) img = PIL.Image.open(plot9_path) response9 = format_text((generate_gemini_response(plot9_path))) from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestClassifier if algorithm == "Random Forest": if method == "Regression": rf = RandomForestRegressor() param_grid = { 'max_depth': [4, 6, 8], 'random_state': [0, 42], 'max_features': ['auto', 'sqrt', 'log2'] } grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='neg_mean_squared_error') grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ rf = RandomForestRegressor(**best_params) rf.fit(X_train, y_train) y_pred = rf.predict(X_test) mae = metrics.mean_absolute_error(y_test, y_pred) mse = metrics.mean_squared_error(y_test, y_pred) r2 = metrics.r2_score(y_test, y_pred) rmse = np.sqrt(mse) # Feature importance visualization imp_df = pd.DataFrame({ "Feature Name": X_train.columns, "Importance": rf.feature_importances_ }) fi = imp_df.sort_values(by="Importance", ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 8)) sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax) ax.set_title('Top 10 Feature Importance (Random Forest Regressor)', fontsize=18) plot10_path = "static/rf_regressor.png" plt.savefig(plot10_path) img = PIL.Image.open(plot10_path) response10 = format_text((generate_gemini_response(plot10_path))) elif method == "Classification": rf = RandomForestClassifier() param_grid = { 'max_depth': [3, 4, 5, 6], 'random_state': [0, 42] } grid_search = GridSearchCV(rf, param_grid, cv=5) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ rf = RandomForestClassifier(**best_params) rf.fit(X_train, y_train) y_pred = rf.predict(X_test) acc = metrics.accuracy_score(y_test, y_pred) f1 = metrics.f1_score(y_test, y_pred, average='micro') prec = metrics.precision_score(y_test, y_pred, average='micro') recall = metrics.recall_score(y_test, y_pred, average='micro') # Feature importance visualization imp_df = pd.DataFrame({ "Feature Name": X_train.columns, "Importance": rf.feature_importances_ }) fi = imp_df.sort_values(by="Importance", ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 8)) sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax) ax.set_title('Top 10 Feature Importance (Random Forest Classifier)', fontsize=18) plot11_path = "static/rf_classifier.png" plt.savefig(plot11_path) img = PIL.Image.open(plot11_path) response11 = format_text((generate_gemini_response(plot11_path))) document_analyzed = True data = { "request": request, "response1": response1, "response2": response2, "response5": response5, "response7": response7, "plot1_path": plot1_path, "plot2_path": plot2_path, "plot5_path": plot5_path, "plot7_path": plot7_path, "show_conversation": document_analyzed, "question_responses": question_responses } # Conditionally include response3 and plot3_path if they exist if response3: data["response3"] = response3 if plot3_path: data["plot3_path"] = plot3_path if response4: data["response4"] = response3 if plot4_path: data["plot4_path"] = plot4_path if response6: data["response6"] = response6 if plot6_path: data["plot6_path"] = plot6_path if response8: data["response8"] = response8 if plot8_path: data["plot8_path"] = plot8_path if response9: data["response9"] = response9 if plot9_path: data["plot9_path"] = plot9_path if response10: data["response10"] = response10 if plot10_path: data["plot10_path"] = plot10_path if response11: data["response11"] = response11 if plot11_path: data["plot11_path"] = plot11_path return templates.TemplateResponse("upload.html", data) # Route for asking questions @app.post("/ask", response_class=HTMLResponse) async def ask_question(request: Request, question: str = Form(...)): global file_extension, question_responses, api global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11 global document_analyzed # Check if a file has been uploaded if not file_extension: raise HTTPException(status_code=400, detail="No file has been uploaded yet.") # Initialize the LLM model llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=api) # Determine the file extension and select the appropriate loader file_path = '' loader = None if file_extension.endswith('.csv'): file_path = 'dataset.csv' loader = UnstructuredCSVLoader(file_path, mode="elements") elif file_extension.endswith('.xlsx'): file_path = 'dataset.xlsx' loader = UnstructuredExcelLoader(file_path, mode="elements") else: raise HTTPException(status_code=400, detail="Unsupported file format") # Load and process the document try: docs = loader.load() except Exception as e: raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}") # Combine document text text = "\n".join([doc.page_content for doc in docs]) os.environ["GOOGLE_API_KEY"] = api # Initialize embeddings and create FAISS vector store embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.split_text(text) document_search = FAISS.from_texts(chunks, embeddings) # Generate query embedding and perform similarity search query_embedding = embeddings.embed_query(question) results = document_search.similarity_search_by_vector(query_embedding, k=3) if results: retrieved_texts = " ".join([result.page_content for result in results]) # Define the Summarize Chain for the question latest_response = "" if not question_responses else question_responses[-1][1] template1 = ( f"{question} Answer the question based on the following:\n\"{text}\"\n:" + (f" Answer the Question with only 3 sentences. Latest conversation: {latest_response}" if latest_response else "") ) prompt1 = PromptTemplate.from_template(template1) # Initialize the LLMChain with the prompt llm_chain1 = LLMChain(llm=llm, prompt=prompt1) # Invoke the chain to get the summary try: response_chain = llm_chain1.invoke({"text": text}) summary1 = response_chain["text"] except Exception as e: raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}") # Generate embeddings for the summary try: summary_embedding = embeddings.embed_query(summary1) document_search = FAISS.from_texts([summary1], embeddings) except Exception as e: raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}") # Perform a search on the FAISS vector database try: if document_search: query_embedding = embeddings.embed_query(question) results = document_search.similarity_search_by_vector(query_embedding, k=1) if results: current_response = format_text(results[0].page_content) else: current_response = "No matching document found in the database." else: current_response = "Vector database not initialized." except Exception as e: raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}") else: current_response = "No relevant results found." # Append the question and response from FAISS search current_question = f"You asked: {question}" question_responses.append((current_question, current_response)) # Save all results to output_summary.json save_to_json(question_responses) data = { "request": request, "response1": response1, "response2": response2, "response5": response5, "response7": response7, "plot1_path": plot1_path, "plot2_path": plot2_path, "plot5_path": plot5_path, "plot7_path": plot7_path, "show_conversation": True, "question_responses": question_responses } # Conditionally include response3 and plot3_path if they exist if response3: data["response3"] = response3 if plot3_path: data["plot3_path"] = plot3_path if response4: data["response4"] = response3 if plot4_path: data["plot4_path"] = plot4_path if response6: data["response6"] = response6 if plot6_path: data["plot6_path"] = plot6_path if response8: data["response8"] = response8 if plot8_path: data["plot8_path"] = plot8_path if response9: data["response9"] = response9 if plot9_path: data["plot9_path"] = plot9_path if response10: data["response10"] = response10 if plot10_path: data["plot10_path"] = plot10_path if response11: data["response11"] = response11 if plot11_path: data["plot11_path"] = plot11_path return templates.TemplateResponse("upload.html", data) def save_to_json(question_responses): outputs = { "question_responses": question_responses } with open("output_summary.json", "w") as outfile: json.dump(outputs, outfile) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="127.0.0.1", port=8000)