Spaces:
Sleeping
Sleeping
File size: 29,754 Bytes
baa7f74 15e1670 baa7f74 ca1a7bb baa7f74 ca1a7bb baa7f74 ca1a7bb d881ace ca1a7bb baa7f74 ca1a7bb d881ace ca1a7bb d881ace ca1a7bb d71ae30 baa7f74 ca1a7bb d881ace ca1a7bb d881ace ca1a7bb baa7f74 ca1a7bb d881ace ca1a7bb baa7f74 ca1a7bb baa7f74 ca1a7bb 694ca7d ca1a7bb baa7f74 ca1a7bb baa7f74 ca1a7bb baa7f74 ca1a7bb 694ca7d ca1a7bb baa7f74 ca1a7bb baa7f74 ca1a7bb d881ace ca1a7bb d881ace ca1a7bb d881ace ca1a7bb baa7f74 ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb d881ace ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb d881ace ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d baa7f74 ca1a7bb baa7f74 ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb baa7f74 ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb 694ca7d ca1a7bb d71ae30 ca1a7bb 694ca7d baa7f74 ca1a7bb baa7f74 ca1a7bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
import gradio as gr
import pandas as pd
from datetime import datetime, timedelta
import logging
import plotly.express as px
import plotly.graph_objects as go
from sklearn.ensemble import IsolationForest
from concurrent.futures import ThreadPoolExecutor
import os
import io
import time
import asyncio
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Try to import reportlab
try:
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib import colors
reportlab_available = True
logging.info("reportlab module successfully imported")
except ImportError:
logging.warning("reportlab module not found. PDF generation disabled.")
reportlab_available = False
# Summarize logs
def summarize_logs(df):
try:
total_devices = df["device_id"].nunique()
total_usage = df["usage_hours"].sum() if "usage_hours" in df.columns else 0
lab_sites = df["lab_site"].nunique() if "lab_site" in df.columns else 0
equipment_types = df["equipment_type"].nunique() if "equipment_type" in df.columns else 0
return f"{total_devices} devices processed with {total_usage:.2f} total usage hours across {lab_sites} lab sites and {equipment_types} equipment types."
except Exception as e:
logging.error(f"Summary generation failed: {str(e)}")
return "Failed to generate summary."
# Anomaly detection
def detect_anomalies(df):
try:
if "usage_hours" not in df.columns or "downtime" not in df.columns:
return "Anomaly detection requires 'usage_hours' and 'downtime' columns.", pd.DataFrame()
features = df[["usage_hours", "downtime"]].fillna(0)
if len(features) > 50:
features = features.sample(n=50, random_state=42)
iso_forest = IsolationForest(contamination=0.1, random_state=42)
df["anomaly"] = iso_forest.fit_predict(features)
anomalies = df[df["anomaly"] == -1][["device_id", "usage_hours", "downtime", "timestamp", "lab_site", "equipment_type"]]
if anomalies.empty:
return "No anomalies detected.", anomalies
return "\n".join([f"- Device ID: {row['device_id']}, Usage: {row['usage_hours']}, Downtime: {row['downtime']}, Timestamp: {row['timestamp']}, Lab Site: {row['lab_site']}, Equipment Type: {row['equipment_type']}" for _, row in anomalies.head(5).iterrows()]), anomalies
except Exception as e:
logging.error(f"Anomaly detection failed: {str(e)}")
return f"Anomaly detection failed: {str(e)}", pd.DataFrame()
# AMC reminders
def check_amc_reminders(df, current_date):
try:
if "device_id" not in df.columns or "amc_date" not in df.columns:
return "AMC reminders require 'device_id' and 'amc_date' columns.", pd.DataFrame()
df["amc_date"] = pd.to_datetime(df["amc_date"], errors='coerce')
current_date = pd.to_datetime(current_date)
df["days_to_amc"] = (df["amc_date"] - current_date).dt.days
reminders = df[(df["days_to_amc"] >= 0) & (df["days_to_amc"] <= 30)][["device_id", "log_type", "status", "timestamp", "usage_hours", "downtime", "amc_date", "lab_site", "equipment_type"]]
if reminders.empty:
return "No AMC reminders due within the next 30 days.", reminders
return "\n".join([f"- Device ID: {row['device_id']}, AMC Date: {row['amc_date']}, Lab Site: {row['lab_site']}, Equipment Type: {row['equipment_type']}" for _, row in reminders.head(5).iterrows()]), reminders
except Exception as e:
logging.error(f"AMC reminder generation failed: {str(e)}")
return f"AMC reminder generation failed: {str(e)}", pd.DataFrame()
# Dashboard insights
def generate_dashboard_insights(df):
try:
total_devices = df["device_id"].nunique()
avg_usage = df["usage_hours"].mean() if "usage_hours" in df.columns else 0
lab_sites = df["lab_site"].unique().tolist() if "lab_site" in df.columns else []
equipment_types = df["equipment_type"].unique().tolist() if "equipment_type" in df.columns else []
return f"{total_devices} devices with average usage of {avg_usage:.2f} hours. Lab Sites: {', '.join(lab_sites)}. Equipment Types: {', '.join(equipment_types)}."
except Exception as e:
logging.error(f"Dashboard insights generation failed: {str(e)}")
return "Failed to generate insights."
# Placeholder chart for empty data
def create_placeholder_chart(title):
fig = go.Figure()
fig.add_annotation(
text="No data available for this chart",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(title=title, margin=dict(l=20, r=20, t=40, b=20))
return fig
# Create usage chart
def create_usage_chart(df):
try:
if df.empty or "usage_hours" not in df.columns or "device_id" not in df.columns:
logging.warning("Insufficient data for usage chart")
return create_placeholder_chart("Usage Hours per Device")
usage_data = df.groupby("device_id")["usage_hours"].sum().reset_index()
if len(usage_data) > 5:
usage_data = usage_data.nlargest(5, "usage_hours")
fig = px.bar(
usage_data,
x="device_id",
y="usage_hours",
title="Usage Hours per Device",
labels={"device_id": "Device ID", "usage_hours": "Usage Hours"}
)
fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
return fig
except Exception as e:
logging.error(f"Failed to create usage chart: {str(e)}")
return create_placeholder_chart("Usage Hours per Device")
# Create downtime chart
def create_downtime_chart(df):
try:
if df.empty or "downtime" not in df.columns or "device_id" not in df.columns:
logging.warning("Insufficient data for downtime chart")
return create_placeholder_chart("Downtime per Device")
downtime_data = df.groupby("device_id")["downtime"].sum().reset_index()
if len(downtime_data) > 5:
downtime_data = downtime_data.nlargest(5, "downtime")
fig = px.bar(
downtime_data,
x="device_id",
y="downtime",
title="Downtime per Device",
labels={"device_id": "Device ID", "downtime": "Downtime (Hours)"}
)
fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
return fig
except Exception as e:
logging.error(f"Failed to create downtime chart: {str(e)}")
return create_placeholder_chart("Downtime per Device")
# Create daily log trends chart
def create_daily_log_trends_chart(df):
try:
if df.empty or "timestamp" not in df.columns:
logging.warning("Insufficient data for daily log trends chart")
return create_placeholder_chart("Daily Log Trends")
df['date'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.date
daily_logs = df.groupby('date').size().reset_index(name='log_count')
if daily_logs.empty:
return create_placeholder_chart("Daily Log Trends")
fig = px.line(
daily_logs,
x='date',
y='log_count',
title="Daily Log Trends",
labels={"date": "Date", "log_count": "Number of Logs"}
)
fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
return fig
except Exception as e:
logging.error(f"Failed to create daily log trends chart: {str(e)}")
return create_placeholder_chart("Daily Log Trends")
# Create weekly uptime chart
def create_weekly_uptime_chart(df):
try:
if df.empty or "timestamp" not in df.columns or "usage_hours" not in df.columns or "downtime" not in df.columns:
logging.warning("Insufficient data for weekly uptime chart")
return create_placeholder_chart("Weekly Uptime Percentage")
df['week'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.isocalendar().week
df['year'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.year
weekly_data = df.groupby(['year', 'week']).agg({
'usage_hours': 'sum',
'downtime': 'sum'
}).reset_index()
weekly_data['uptime_percent'] = (weekly_data['usage_hours'] / (weekly_data['usage_hours'] + weekly_data['downtime'])) * 100
weekly_data['year_week'] = weekly_data['year'].astype(str) + '-W' + weekly_data['week'].astype(str)
if weekly_data.empty:
return create_placeholder_chart("Weekly Uptime Percentage")
fig = px.bar(
weekly_data,
x='year_week',
y='uptime_percent',
title="Weekly Uptime Percentage",
labels={"year_week": "Year-Week", "uptime_percent": "Uptime %"}
)
fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
return fig
except Exception as e:
logging.error(f"Failed to create weekly uptime chart: {str(e)}")
return create_placeholder_chart("Weekly Uptime Percentage")
# Create anomaly alerts chart
def create_anomaly_alerts_chart(anomalies_df):
try:
if anomalies_df is None or anomalies_df.empty or "timestamp" not in anomalies_df.columns:
logging.warning("Insufficient data for anomaly alerts chart")
return create_placeholder_chart("Anomaly Alerts Over Time")
anomalies_df['date'] = pd.to_datetime(anomalies_df['timestamp'], errors='coerce').dt.date
anomaly_counts = anomalies_df.groupby('date').size().reset_index(name='anomaly_count')
if anomaly_counts.empty:
return create_placeholder_chart("Anomaly Alerts Over Time")
fig = px.scatter(
anomaly_counts,
x='date',
y='anomaly_count',
title="Anomaly Alerts Over Time",
labels={"date": "Date", "anomaly_count": "Number of Anomalies"}
)
fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
return fig
except Exception as e:
logging.error(f"Failed to create anomaly alerts chart: {str(e)}")
return create_placeholder_chart("Anomaly Alerts Over Time")
# Generate device cards
def generate_device_cards(df):
try:
if df.empty:
return '<p>No devices available to display.</p>'
device_stats = df.groupby('device_id').agg({
'status': 'last',
'timestamp': 'max',
'lab_site': 'last',
'equipment_type': 'last'
}).reset_index()
device_stats['count'] = df.groupby('device_id').size().reindex(device_stats['device_id']).values
device_stats['health'] = device_stats['status'].map({
'Active': 'Healthy',
'Inactive': 'Unhealthy',
'Pending': 'Warning'
}).fillna('Unknown')
cards_html = '<div style="display: flex; flex-wrap: wrap; gap: 20px;">'
for _, row in device_stats.iterrows():
health_color = {'Healthy': 'green', 'Unhealthy': 'red', 'Warning': 'orange', 'Unknown': 'gray'}.get(row['health'], 'gray')
timestamp_str = str(row['timestamp']) if pd.notna(row['timestamp']) else 'Unknown'
lab_site = row['lab_site'] if pd.notna(row['lab_site']) else 'Unknown'
equipment_type = row['equipment_type'] if pd.notna(row['equipment_type']) else 'Unknown'
cards_html += f"""
<div style="border: 1px solid #e0e0e0; padding: 10px; border-radius: 5px; width: 200px;">
<h4>Device: {row['device_id']}</h4>
<p><b>Health:</b> <span style="color: {health_color}">{row['health']}</span></p>
<p><b>Lab Site:</b> {lab_site}</p>
<p><b>Equipment Type:</b> {equipment_type}</p>
<p><b>Usage Count:</b> {row['count']}</p>
<p><b>Last Log:</b> {timestamp_str}</p>
</div>
"""
cards_html += '</div>'
return cards_html
except Exception as e:
logging.error(f"Failed to generate device cards: {str(e)}")
return f'<p>Error generating device cards: {str(e)}</p>'
# Generate PDF content
def generate_pdf_content(summary, preview_df, anomalies, amc_reminders, insights, device_cards_html, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart):
if not reportlab_available:
return None
try:
pdf_path = f"status_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf"
doc = SimpleDocTemplate(pdf_path, pagesize=letter)
styles = getSampleStyleSheet()
story = []
def safe_paragraph(text, style):
return Paragraph(str(text).replace('\n', '<br/>'), style) if text else Paragraph("", style)
story.append(Paragraph("LabOps Status Report", styles['Title']))
story.append(Paragraph(f"Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
story.append(Spacer(1, 12))
story.append(Paragraph("Summary Report", styles['Heading2']))
story.append(safe_paragraph(summary, styles['Normal']))
story.append(Spacer(1, 12))
story.append(Paragraph("Log Preview", styles['Heading2']))
if not preview_df.empty:
data = [preview_df.columns.tolist()] + preview_df.head(5).values.tolist()
table = Table(data)
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('TEXTCOLOR', (0, 1), (-1, -1), colors.black),
('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 1), (-1, -1), 10),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(table)
else:
story.append(safe_paragraph("No preview available.", styles['Normal']))
story.append(Spacer(1, 12))
story.append(Paragraph("Device Cards", styles['Heading2']))
device_cards_text = device_cards_html.replace('<div>', '').replace('</div>', '\n').replace('<h4>', '').replace('</h4>', '\n').replace('<p>', '').replace('</p>', '\n').replace('<b>', '').replace('</b>', '').replace('<span style="color: green">', '').replace('<span style="color: red">', '').replace('<span style="color: orange">', '').replace('<span style="color: gray">', '').replace('</span>', '')
story.append(safe_paragraph(device_cards_text, styles['Normal']))
story.append(Spacer(1, 12))
story.append(Paragraph("Anomaly Detection", styles['Heading2']))
story.append(safe_paragraph(anomalies, styles['Normal']))
story.append(Spacer(1, 12))
story.append(Paragraph("AMC Reminders", styles['Heading2']))
story.append(safe_paragraph(amc_reminders, styles['Normal']))
story.append(Spacer(1, 12))
story.append(Paragraph("Dashboard Insights", styles['Heading2']))
story.append(safe_paragraph(insights, styles['Normal']))
story.append(Spacer(1, 12))
story.append(Paragraph("Charts", styles['Heading2']))
story.append(Paragraph("[Chart placeholders - see dashboard for visuals]", styles['Normal']))
doc.build(story)
logging.info(f"PDF generated at {pdf_path}")
return pdf_path
except Exception as e:
logging.error(f"Failed to generate PDF: {str(e)}")
return None
# Main processing function
async def process_logs(file_obj, lab_site_filter, equipment_type_filter, date_range, cached_df_state, last_modified_state):
start_time = time.time()
try:
if not file_obj:
return "No file uploaded.", "<p>No data available.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "No anomalies detected.", "No AMC reminders.", "No insights generated.", None, cached_df_state, last_modified_state
file_path = file_obj.name
current_modified_time = os.path.getmtime(file_path)
# Read file only if it's new or modified
if cached_df_state is None or current_modified_time != last_modified_state:
logging.info(f"Processing new or modified file: {file_path}")
if not file_path.endswith(".csv"):
return "Please upload a CSV file.", "<p>Invalid file format.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state
required_columns = ["device_id", "log_type", "status", "timestamp", "usage_hours", "downtime", "amc_date"]
dtypes = {
"device_id": "string",
"log_type": "string",
"status": "string",
"usage_hours": "float32",
"downtime": "float32",
"amc_date": "string",
"lab_site": "string",
"equipment_type": "string"
}
df = pd.read_csv(file_path, dtype=dtypes)
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
return f"Missing columns: {missing_columns}", "<p>Missing required columns.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state
df["timestamp"] = pd.to_datetime(df["timestamp"], errors='coerce')
df["amc_date"] = pd.to_datetime(df["amc_date"], errors='coerce')
if df["timestamp"].dt.tz is None:
df["timestamp"] = df["timestamp"].dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata')
if df.empty:
return "No data available.", "<p>No data available.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "", "", "", None, df, current_modified_time
else:
df = cached_df_state
# Apply filters
filtered_df = df.copy()
if lab_site_filter and lab_site_filter != 'All' and 'lab_site' in filtered_df.columns:
filtered_df = filtered_df[filtered_df['lab_site'] == lab_site_filter]
if equipment_type_filter and equipment_type_filter != 'All' and 'equipment_type' in filtered_df.columns:
filtered_df = filtered_df[filtered_df['equipment_type'] == equipment_type_filter]
if date_range and len(date_range) == 2:
days_start, days_end = date_range
today = pd.to_datetime(datetime.now()).tz_localize('Asia/Kolkata')
start_date = today + pd.Timedelta(days=days_start)
end_date = today + pd.Timedelta(days=days_end) + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
start_date = start_date.tz_convert('Asia/Kolkata') if start_date.tzinfo else start_date.tz_localize('Asia/Kolkata')
end_date = end_date.tz_convert('Asia/Kolkata') if end_date.tzinfo else end_date.tz_localize('Asia/Kolkata')
logging.info(f"Date range filter: start_date={start_date}, end_date={end_date}")
logging.info(f"Before date filter: {len(filtered_df)} rows")
filtered_df = filtered_df[(filtered_df['timestamp'] >= start_date) & (filtered_df['timestamp'] <= end_date)]
logging.info(f"After date filter: {len(filtered_df)} rows")
if filtered_df.empty:
return "No data after applying filters.", "<p>No data after filters.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "", "", "", None, df, current_modified_time
# Generate table for preview
preview_df = filtered_df[['device_id', 'log_type', 'status', 'timestamp', 'usage_hours', 'downtime', 'amc_date', 'lab_site', 'equipment_type']].head(5)
preview_html = preview_df.to_html(index=False, classes='table table-striped', border=0)
# Run critical tasks concurrently
with ThreadPoolExecutor(max_workers=2) as executor:
future_anomalies = executor.submit(detect_anomalies, filtered_df)
future_amc = executor.submit(check_amc_reminders, filtered_df, datetime.now())
summary = f"Step 1: Summary Report\n{summarize_logs(filtered_df)}"
anomalies, anomalies_df = future_anomalies.result()
anomalies = f"Anomaly Detection\n{anomalies}"
amc_reminders, reminders_df = future_amc.result()
amc_reminders = f"AMC Reminders\n{amc_reminders}"
insights = f"Dashboard Insights\n{generate_dashboard_insights(filtered_df)}"
# Generate charts sequentially
usage_chart = create_usage_chart(filtered_df)
downtime_chart = create_downtime_chart(filtered_df)
daily_log_chart = create_daily_log_trends_chart(filtered_df)
weekly_uptime_chart = create_weekly_uptime_chart(filtered_df)
anomaly_alerts_chart = create_anomaly_alerts_chart(anomalies_df)
device_cards = generate_device_cards(filtered_df)
elapsed_time = time.time() - start_time
logging.info(f"Processing completed in {elapsed_time:.2f} seconds")
if elapsed_time > 3:
logging.warning(f"Processing time exceeded 3 seconds: {elapsed_time:.2f} seconds")
return (summary, preview_html, usage_chart, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart, anomalies, amc_reminders, insights, None, df, current_modified_time)
except Exception as e:
logging.error(f"Failed to process file: {str(e)}")
return f"Error: {str(e)}", "<p>Error processing data.</p>", None, '<p>Error processing data.</p>', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state
# Generate PDF separately
async def generate_pdf(summary, preview_html, usage_chart, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart, anomalies, amc_reminders, insights):
try:
preview_df = pd.read_html(preview_html)[0]
pdf_file = generate_pdf_content(summary, preview_df, anomalies, amc_reminders, insights, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart)
return pdf_file
except Exception as e:
logging.error(f"Failed to generate PDF: {str(e)}")
return None
# Update filters
def update_filters(file_obj, current_file_state):
if not file_obj or file_obj.name == current_file_state:
return gr.update(), gr.update(), current_file_state
try:
with open(file_obj.name, 'rb') as f:
csv_content = f.read().decode('utf-8')
df = pd.read_csv(io.StringIO(csv_content))
df['timestamp'] = pd.to_datetime(df['timestamp'], errors='coerce')
lab_site_options = ['All'] + [site for site in df['lab_site'].dropna().astype(str).unique().tolist() if site.strip()] if 'lab_site' in df.columns else ['All']
equipment_type_options = ['All'] + [equip for equip in df['equipment_type'].dropna().astype(str).unique().tolist() if equip.strip()] if 'equipment_type' in df.columns else ['All']
return gr.update(choices=lab_site_options, value='All'), gr.update(choices=equipment_type_options, value='All'), file_obj.name
except Exception as e:
logging.error(f"Failed to update filters: {str(e)}")
return gr.update(choices=['All'], value='All'), gr.update(choices=['All'], value='All'), current_file_state
# Gradio Interface
try:
logging.info("Initializing Gradio interface...")
with gr.Blocks(css="""
.dashboard-container {border: 1px solid #e0e0e0; padding: 10px; border-radius: 5px;}
.dashboard-title {font-size: 24px; font-weight: bold; margin-bottom: 5px;}
.dashboard-section {margin-bottom: 20px;}
.dashboard-section h3 {font-size: 18px; margin-bottom: 2px;}
.dashboard-section p {margin: 1px 0; line-height: 1.2;}
.dashboard-section ul {margin: 2px 0; padding-left: 20px;}
.table {width: 100%; border-collapse: collapse;}
.table th, .table td {border: 1px solid #ddd; padding: 8px; text-align: left;}
.table th {background-color: #f2f2f2;}
.table tr:nth-child(even) {background-color: #f9f9f9;}
""") as iface:
gr.Markdown("<h1>LabOps Log Analyzer Dashboard</h1>")
gr.Markdown("Upload a CSV file to analyze. Click 'Analyze' to refresh the dashboard. Use 'Export PDF' for report download.")
last_modified_state = gr.State(value=None)
current_file_state = gr.State(value=None)
cached_df_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Logs (CSV)", file_types=[".csv"])
with gr.Group():
gr.Markdown("### Filters")
lab_site_filter = gr.Dropdown(label="Lab Site", choices=['All'], value='All', interactive=True)
equipment_type_filter = gr.Dropdown(label="Equipment Type", choices=['All'], value='All', interactive=True)
date_range_filter = gr.Slider(label="Date Range (Days from Today, e.g., -7 to 0 means last 7 days)", minimum=-365, maximum=0, step=1, value=[-7, 0])
submit_button = gr.Button("Analyze", variant="primary")
pdf_button = gr.Button("Export PDF", variant="secondary")
with gr.Column(scale=2):
with gr.Group(elem_classes="dashboard-container"):
gr.Markdown("<div class='dashboard-title'>Analysis Results</div>")
with gr.Group(elem_classes="dashboard-section"):
gr.Markdown("### Step 1: Summary Report")
summary_output = gr.Markdown()
with gr.Group(elem_classes="dashboard-section"):
gr.Markdown("### Step 2: Log Preview")
preview_output = gr.HTML()
with gr.Group(elem_classes="dashboard-section"):
gr.Markdown("### Device Cards")
device_cards_output = gr.HTML()
with gr.Group(elem_classes="dashboard-section"):
gr.Markdown("### Charts")
with gr.Tab("Usage Hours per Device"):
usage_chart_output = gr.Plot()
with gr.Tab("Downtime per Device"):
downtime_chart_output = gr.Plot()
with gr.Tab("Daily Log Trends"):
daily_log_trends_output = gr.Plot()
with gr.Tab("Weekly Uptime Percentage"):
weekly_uptime_output = gr.Plot()
with gr.Tab("Anomaly Alerts"):
anomaly_alerts_output = gr.Plot()
with gr.Group(elem_classes="dashboard-section"):
gr.Markdown("### Step 4: Anomaly Detection")
anomaly_output = gr.Markdown()
with gr.Group(elem_classes="dashboard-section"):
gr.Markdown("### Step 5: AMC Reminders")
amc_output = gr.Markdown()
with gr.Group(elem_classes="dashboard-section"):
gr.Markdown("### Step 6: Insights")
insights_output = gr.Markdown()
with gr.Group(elem_classes="dashboard-section"):
gr.Markdown("### Export Report")
pdf_output = gr.File(label="Download Status Report as PDF")
file_input.change(
fn=update_filters,
inputs=[file_input, current_file_state],
outputs=[lab_site_filter, equipment_type_filter, current_file_state],
queue=False
)
submit_button.click(
fn=process_logs,
inputs=[file_input, lab_site_filter, equipment_type_filter, date_range_filter, cached_df_state, last_modified_state],
outputs=[summary_output, preview_output, usage_chart_output, device_cards_output, daily_log_trends_output, weekly_uptime_output, anomaly_alerts_output, downtime_chart_output, anomaly_output, amc_output, insights_output, pdf_output, cached_df_state, last_modified_state]
)
pdf_button.click(
fn=generate_pdf,
inputs=[summary_output, preview_output, usage_chart_output, device_cards_output, daily_log_trends_output, weekly_uptime_output, anomaly_alerts_output, downtime_chart_output, anomaly_output, amc_output, insights_output],
outputs=[pdf_output]
)
logging.info("Gradio interface initialized successfully")
except Exception as e:
logging.error(f"Failed to initialize Gradio interface: {str(e)}")
raise e
if __name__ == "__main__":
try:
logging.info("Launching Gradio interface...")
iface.launch(server_name="0.0.0.0", server_port=7860, debug=True, share=False)
logging.info("Gradio interface launched successfully")
except Exception as e:
logging.error(f"Failed to launch Gradio interface: {str(e)}")
print(f"Error launching app: {str(e)}")
raise e |