File size: 29,754 Bytes
baa7f74
 
 
 
 
 
 
15e1670
baa7f74
 
 
 
 
 
 
 
 
 
ca1a7bb
 
 
 
 
 
baa7f74
ca1a7bb
 
baa7f74
 
 
ca1a7bb
 
 
d881ace
 
 
ca1a7bb
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
 
d881ace
ca1a7bb
 
d881ace
ca1a7bb
 
 
 
d71ae30
baa7f74
ca1a7bb
 
 
 
 
 
d881ace
ca1a7bb
 
d881ace
ca1a7bb
 
 
baa7f74
 
 
ca1a7bb
 
 
d881ace
 
 
ca1a7bb
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694ca7d
ca1a7bb
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa7f74
 
 
ca1a7bb
694ca7d
 
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
 
d881ace
 
ca1a7bb
 
 
 
 
 
 
 
 
 
 
d881ace
 
ca1a7bb
 
 
 
d881ace
 
ca1a7bb
 
 
 
 
 
 
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694ca7d
ca1a7bb
 
 
694ca7d
ca1a7bb
 
 
 
694ca7d
ca1a7bb
694ca7d
ca1a7bb
694ca7d
ca1a7bb
 
 
 
 
 
 
 
d881ace
 
 
ca1a7bb
 
 
 
694ca7d
ca1a7bb
 
 
 
 
 
694ca7d
ca1a7bb
 
 
694ca7d
ca1a7bb
 
 
 
694ca7d
ca1a7bb
 
694ca7d
ca1a7bb
 
694ca7d
 
 
 
ca1a7bb
694ca7d
ca1a7bb
 
694ca7d
ca1a7bb
 
d881ace
ca1a7bb
 
 
694ca7d
 
 
 
 
 
 
 
 
 
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
694ca7d
ca1a7bb
 
694ca7d
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
694ca7d
 
ca1a7bb
694ca7d
 
ca1a7bb
694ca7d
ca1a7bb
 
 
baa7f74
 
 
ca1a7bb
 
 
 
 
 
 
 
 
 
694ca7d
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694ca7d
ca1a7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694ca7d
 
ca1a7bb
 
 
 
d71ae30
ca1a7bb
 
 
694ca7d
baa7f74
ca1a7bb
 
baa7f74
 
ca1a7bb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import gradio as gr
import pandas as pd
from datetime import datetime, timedelta
import logging
import plotly.express as px
import plotly.graph_objects as go
from sklearn.ensemble import IsolationForest
from concurrent.futures import ThreadPoolExecutor
import os
import io
import time
import asyncio

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Try to import reportlab
try:
    from reportlab.lib.pagesizes import letter
    from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
    from reportlab.lib.styles import getSampleStyleSheet
    from reportlab.lib import colors
    reportlab_available = True
    logging.info("reportlab module successfully imported")
except ImportError:
    logging.warning("reportlab module not found. PDF generation disabled.")
    reportlab_available = False

# Summarize logs
def summarize_logs(df):
    try:
        total_devices = df["device_id"].nunique()
        total_usage = df["usage_hours"].sum() if "usage_hours" in df.columns else 0
        lab_sites = df["lab_site"].nunique() if "lab_site" in df.columns else 0
        equipment_types = df["equipment_type"].nunique() if "equipment_type" in df.columns else 0
        return f"{total_devices} devices processed with {total_usage:.2f} total usage hours across {lab_sites} lab sites and {equipment_types} equipment types."
    except Exception as e:
        logging.error(f"Summary generation failed: {str(e)}")
        return "Failed to generate summary."

# Anomaly detection
def detect_anomalies(df):
    try:
        if "usage_hours" not in df.columns or "downtime" not in df.columns:
            return "Anomaly detection requires 'usage_hours' and 'downtime' columns.", pd.DataFrame()
        features = df[["usage_hours", "downtime"]].fillna(0)
        if len(features) > 50:
            features = features.sample(n=50, random_state=42)
        iso_forest = IsolationForest(contamination=0.1, random_state=42)
        df["anomaly"] = iso_forest.fit_predict(features)
        anomalies = df[df["anomaly"] == -1][["device_id", "usage_hours", "downtime", "timestamp", "lab_site", "equipment_type"]]
        if anomalies.empty:
            return "No anomalies detected.", anomalies
        return "\n".join([f"- Device ID: {row['device_id']}, Usage: {row['usage_hours']}, Downtime: {row['downtime']}, Timestamp: {row['timestamp']}, Lab Site: {row['lab_site']}, Equipment Type: {row['equipment_type']}" for _, row in anomalies.head(5).iterrows()]), anomalies
    except Exception as e:
        logging.error(f"Anomaly detection failed: {str(e)}")
        return f"Anomaly detection failed: {str(e)}", pd.DataFrame()

# AMC reminders
def check_amc_reminders(df, current_date):
    try:
        if "device_id" not in df.columns or "amc_date" not in df.columns:
            return "AMC reminders require 'device_id' and 'amc_date' columns.", pd.DataFrame()
        df["amc_date"] = pd.to_datetime(df["amc_date"], errors='coerce')
        current_date = pd.to_datetime(current_date)
        df["days_to_amc"] = (df["amc_date"] - current_date).dt.days
        reminders = df[(df["days_to_amc"] >= 0) & (df["days_to_amc"] <= 30)][["device_id", "log_type", "status", "timestamp", "usage_hours", "downtime", "amc_date", "lab_site", "equipment_type"]]
        if reminders.empty:
            return "No AMC reminders due within the next 30 days.", reminders
        return "\n".join([f"- Device ID: {row['device_id']}, AMC Date: {row['amc_date']}, Lab Site: {row['lab_site']}, Equipment Type: {row['equipment_type']}" for _, row in reminders.head(5).iterrows()]), reminders
    except Exception as e:
        logging.error(f"AMC reminder generation failed: {str(e)}")
        return f"AMC reminder generation failed: {str(e)}", pd.DataFrame()

# Dashboard insights
def generate_dashboard_insights(df):
    try:
        total_devices = df["device_id"].nunique()
        avg_usage = df["usage_hours"].mean() if "usage_hours" in df.columns else 0
        lab_sites = df["lab_site"].unique().tolist() if "lab_site" in df.columns else []
        equipment_types = df["equipment_type"].unique().tolist() if "equipment_type" in df.columns else []
        return f"{total_devices} devices with average usage of {avg_usage:.2f} hours. Lab Sites: {', '.join(lab_sites)}. Equipment Types: {', '.join(equipment_types)}."
    except Exception as e:
        logging.error(f"Dashboard insights generation failed: {str(e)}")
        return "Failed to generate insights."

# Placeholder chart for empty data
def create_placeholder_chart(title):
    fig = go.Figure()
    fig.add_annotation(
        text="No data available for this chart",
        xref="paper", yref="paper",
        x=0.5, y=0.5, showarrow=False,
        font=dict(size=16)
    )
    fig.update_layout(title=title, margin=dict(l=20, r=20, t=40, b=20))
    return fig

# Create usage chart
def create_usage_chart(df):
    try:
        if df.empty or "usage_hours" not in df.columns or "device_id" not in df.columns:
            logging.warning("Insufficient data for usage chart")
            return create_placeholder_chart("Usage Hours per Device")
        usage_data = df.groupby("device_id")["usage_hours"].sum().reset_index()
        if len(usage_data) > 5:
            usage_data = usage_data.nlargest(5, "usage_hours")
        fig = px.bar(
            usage_data,
            x="device_id",
            y="usage_hours",
            title="Usage Hours per Device",
            labels={"device_id": "Device ID", "usage_hours": "Usage Hours"}
        )
        fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
        return fig
    except Exception as e:
        logging.error(f"Failed to create usage chart: {str(e)}")
        return create_placeholder_chart("Usage Hours per Device")

# Create downtime chart
def create_downtime_chart(df):
    try:
        if df.empty or "downtime" not in df.columns or "device_id" not in df.columns:
            logging.warning("Insufficient data for downtime chart")
            return create_placeholder_chart("Downtime per Device")
        downtime_data = df.groupby("device_id")["downtime"].sum().reset_index()
        if len(downtime_data) > 5:
            downtime_data = downtime_data.nlargest(5, "downtime")
        fig = px.bar(
            downtime_data,
            x="device_id",
            y="downtime",
            title="Downtime per Device",
            labels={"device_id": "Device ID", "downtime": "Downtime (Hours)"}
        )
        fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
        return fig
    except Exception as e:
        logging.error(f"Failed to create downtime chart: {str(e)}")
        return create_placeholder_chart("Downtime per Device")

# Create daily log trends chart
def create_daily_log_trends_chart(df):
    try:
        if df.empty or "timestamp" not in df.columns:
            logging.warning("Insufficient data for daily log trends chart")
            return create_placeholder_chart("Daily Log Trends")
        df['date'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.date
        daily_logs = df.groupby('date').size().reset_index(name='log_count')
        if daily_logs.empty:
            return create_placeholder_chart("Daily Log Trends")
        fig = px.line(
            daily_logs,
            x='date',
            y='log_count',
            title="Daily Log Trends",
            labels={"date": "Date", "log_count": "Number of Logs"}
        )
        fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
        return fig
    except Exception as e:
        logging.error(f"Failed to create daily log trends chart: {str(e)}")
        return create_placeholder_chart("Daily Log Trends")

# Create weekly uptime chart
def create_weekly_uptime_chart(df):
    try:
        if df.empty or "timestamp" not in df.columns or "usage_hours" not in df.columns or "downtime" not in df.columns:
            logging.warning("Insufficient data for weekly uptime chart")
            return create_placeholder_chart("Weekly Uptime Percentage")
        df['week'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.isocalendar().week
        df['year'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.year
        weekly_data = df.groupby(['year', 'week']).agg({
            'usage_hours': 'sum',
            'downtime': 'sum'
        }).reset_index()
        weekly_data['uptime_percent'] = (weekly_data['usage_hours'] / (weekly_data['usage_hours'] + weekly_data['downtime'])) * 100
        weekly_data['year_week'] = weekly_data['year'].astype(str) + '-W' + weekly_data['week'].astype(str)
        if weekly_data.empty:
            return create_placeholder_chart("Weekly Uptime Percentage")
        fig = px.bar(
            weekly_data,
            x='year_week',
            y='uptime_percent',
            title="Weekly Uptime Percentage",
            labels={"year_week": "Year-Week", "uptime_percent": "Uptime %"}
        )
        fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
        return fig
    except Exception as e:
        logging.error(f"Failed to create weekly uptime chart: {str(e)}")
        return create_placeholder_chart("Weekly Uptime Percentage")

# Create anomaly alerts chart
def create_anomaly_alerts_chart(anomalies_df):
    try:
        if anomalies_df is None or anomalies_df.empty or "timestamp" not in anomalies_df.columns:
            logging.warning("Insufficient data for anomaly alerts chart")
            return create_placeholder_chart("Anomaly Alerts Over Time")
        anomalies_df['date'] = pd.to_datetime(anomalies_df['timestamp'], errors='coerce').dt.date
        anomaly_counts = anomalies_df.groupby('date').size().reset_index(name='anomaly_count')
        if anomaly_counts.empty:
            return create_placeholder_chart("Anomaly Alerts Over Time")
        fig = px.scatter(
            anomaly_counts,
            x='date',
            y='anomaly_count',
            title="Anomaly Alerts Over Time",
            labels={"date": "Date", "anomaly_count": "Number of Anomalies"}
        )
        fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20))
        return fig
    except Exception as e:
        logging.error(f"Failed to create anomaly alerts chart: {str(e)}")
        return create_placeholder_chart("Anomaly Alerts Over Time")

# Generate device cards
def generate_device_cards(df):
    try:
        if df.empty:
            return '<p>No devices available to display.</p>'
        device_stats = df.groupby('device_id').agg({
            'status': 'last',
            'timestamp': 'max',
            'lab_site': 'last',
            'equipment_type': 'last'
        }).reset_index()
        device_stats['count'] = df.groupby('device_id').size().reindex(device_stats['device_id']).values
        device_stats['health'] = device_stats['status'].map({
            'Active': 'Healthy',
            'Inactive': 'Unhealthy',
            'Pending': 'Warning'
        }).fillna('Unknown')
        cards_html = '<div style="display: flex; flex-wrap: wrap; gap: 20px;">'
        for _, row in device_stats.iterrows():
            health_color = {'Healthy': 'green', 'Unhealthy': 'red', 'Warning': 'orange', 'Unknown': 'gray'}.get(row['health'], 'gray')
            timestamp_str = str(row['timestamp']) if pd.notna(row['timestamp']) else 'Unknown'
            lab_site = row['lab_site'] if pd.notna(row['lab_site']) else 'Unknown'
            equipment_type = row['equipment_type'] if pd.notna(row['equipment_type']) else 'Unknown'
            cards_html += f"""
                <div style="border: 1px solid #e0e0e0; padding: 10px; border-radius: 5px; width: 200px;">
                    <h4>Device: {row['device_id']}</h4>
                    <p><b>Health:</b> <span style="color: {health_color}">{row['health']}</span></p>
                    <p><b>Lab Site:</b> {lab_site}</p>
                    <p><b>Equipment Type:</b> {equipment_type}</p>
                    <p><b>Usage Count:</b> {row['count']}</p>
                    <p><b>Last Log:</b> {timestamp_str}</p>
                </div>
            """
        cards_html += '</div>'
        return cards_html
    except Exception as e:
        logging.error(f"Failed to generate device cards: {str(e)}")
        return f'<p>Error generating device cards: {str(e)}</p>'

# Generate PDF content
def generate_pdf_content(summary, preview_df, anomalies, amc_reminders, insights, device_cards_html, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart):
    if not reportlab_available:
        return None
    try:
        pdf_path = f"status_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf"
        doc = SimpleDocTemplate(pdf_path, pagesize=letter)
        styles = getSampleStyleSheet()
        story = []

        def safe_paragraph(text, style):
            return Paragraph(str(text).replace('\n', '<br/>'), style) if text else Paragraph("", style)

        story.append(Paragraph("LabOps Status Report", styles['Title']))
        story.append(Paragraph(f"Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
        story.append(Spacer(1, 12))

        story.append(Paragraph("Summary Report", styles['Heading2']))
        story.append(safe_paragraph(summary, styles['Normal']))
        story.append(Spacer(1, 12))

        story.append(Paragraph("Log Preview", styles['Heading2']))
        if not preview_df.empty:
            data = [preview_df.columns.tolist()] + preview_df.head(5).values.tolist()
            table = Table(data)
            table.setStyle(TableStyle([
                ('BACKGROUND', (0, 0), (-1, 0), colors.grey),
                ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
                ('ALIGN', (0, 0), (-1, -1), 'CENTER'),
                ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
                ('FONTSIZE', (0, 0), (-1, 0), 12),
                ('BOTTOMPADDING', (0, 0), (-1, 0), 12),
                ('BACKGROUND', (0, 1), (-1, -1), colors.beige),
                ('TEXTCOLOR', (0, 1), (-1, -1), colors.black),
                ('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
                ('FONTSIZE', (0, 1), (-1, -1), 10),
                ('GRID', (0, 0), (-1, -1), 1, colors.black)
            ]))
            story.append(table)
        else:
            story.append(safe_paragraph("No preview available.", styles['Normal']))
        story.append(Spacer(1, 12))

        story.append(Paragraph("Device Cards", styles['Heading2']))
        device_cards_text = device_cards_html.replace('<div>', '').replace('</div>', '\n').replace('<h4>', '').replace('</h4>', '\n').replace('<p>', '').replace('</p>', '\n').replace('<b>', '').replace('</b>', '').replace('<span style="color: green">', '').replace('<span style="color: red">', '').replace('<span style="color: orange">', '').replace('<span style="color: gray">', '').replace('</span>', '')
        story.append(safe_paragraph(device_cards_text, styles['Normal']))
        story.append(Spacer(1, 12))

        story.append(Paragraph("Anomaly Detection", styles['Heading2']))
        story.append(safe_paragraph(anomalies, styles['Normal']))
        story.append(Spacer(1, 12))

        story.append(Paragraph("AMC Reminders", styles['Heading2']))
        story.append(safe_paragraph(amc_reminders, styles['Normal']))
        story.append(Spacer(1, 12))

        story.append(Paragraph("Dashboard Insights", styles['Heading2']))
        story.append(safe_paragraph(insights, styles['Normal']))
        story.append(Spacer(1, 12))

        story.append(Paragraph("Charts", styles['Heading2']))
        story.append(Paragraph("[Chart placeholders - see dashboard for visuals]", styles['Normal']))

        doc.build(story)
        logging.info(f"PDF generated at {pdf_path}")
        return pdf_path
    except Exception as e:
        logging.error(f"Failed to generate PDF: {str(e)}")
        return None

# Main processing function
async def process_logs(file_obj, lab_site_filter, equipment_type_filter, date_range, cached_df_state, last_modified_state):
    start_time = time.time()
    try:
        if not file_obj:
            return "No file uploaded.", "<p>No data available.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "No anomalies detected.", "No AMC reminders.", "No insights generated.", None, cached_df_state, last_modified_state

        file_path = file_obj.name
        current_modified_time = os.path.getmtime(file_path)

        # Read file only if it's new or modified
        if cached_df_state is None or current_modified_time != last_modified_state:
            logging.info(f"Processing new or modified file: {file_path}")
            if not file_path.endswith(".csv"):
                return "Please upload a CSV file.", "<p>Invalid file format.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state

            required_columns = ["device_id", "log_type", "status", "timestamp", "usage_hours", "downtime", "amc_date"]
            dtypes = {
                "device_id": "string",
                "log_type": "string",
                "status": "string",
                "usage_hours": "float32",
                "downtime": "float32",
                "amc_date": "string",
                "lab_site": "string",
                "equipment_type": "string"
            }
            df = pd.read_csv(file_path, dtype=dtypes)
            missing_columns = [col for col in required_columns if col not in df.columns]
            if missing_columns:
                return f"Missing columns: {missing_columns}", "<p>Missing required columns.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state

            df["timestamp"] = pd.to_datetime(df["timestamp"], errors='coerce')
            df["amc_date"] = pd.to_datetime(df["amc_date"], errors='coerce')
            if df["timestamp"].dt.tz is None:
                df["timestamp"] = df["timestamp"].dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata')
            if df.empty:
                return "No data available.", "<p>No data available.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "", "", "", None, df, current_modified_time
        else:
            df = cached_df_state

        # Apply filters
        filtered_df = df.copy()
        if lab_site_filter and lab_site_filter != 'All' and 'lab_site' in filtered_df.columns:
            filtered_df = filtered_df[filtered_df['lab_site'] == lab_site_filter]
        if equipment_type_filter and equipment_type_filter != 'All' and 'equipment_type' in filtered_df.columns:
            filtered_df = filtered_df[filtered_df['equipment_type'] == equipment_type_filter]
        if date_range and len(date_range) == 2:
            days_start, days_end = date_range
            today = pd.to_datetime(datetime.now()).tz_localize('Asia/Kolkata')
            start_date = today + pd.Timedelta(days=days_start)
            end_date = today + pd.Timedelta(days=days_end) + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
            start_date = start_date.tz_convert('Asia/Kolkata') if start_date.tzinfo else start_date.tz_localize('Asia/Kolkata')
            end_date = end_date.tz_convert('Asia/Kolkata') if end_date.tzinfo else end_date.tz_localize('Asia/Kolkata')
            logging.info(f"Date range filter: start_date={start_date}, end_date={end_date}")
            logging.info(f"Before date filter: {len(filtered_df)} rows")
            filtered_df = filtered_df[(filtered_df['timestamp'] >= start_date) & (filtered_df['timestamp'] <= end_date)]
            logging.info(f"After date filter: {len(filtered_df)} rows")

        if filtered_df.empty:
            return "No data after applying filters.", "<p>No data after filters.</p>", None, '<p>No device cards available.</p>', None, None, None, None, "", "", "", None, df, current_modified_time

        # Generate table for preview
        preview_df = filtered_df[['device_id', 'log_type', 'status', 'timestamp', 'usage_hours', 'downtime', 'amc_date', 'lab_site', 'equipment_type']].head(5)
        preview_html = preview_df.to_html(index=False, classes='table table-striped', border=0)

        # Run critical tasks concurrently
        with ThreadPoolExecutor(max_workers=2) as executor:
            future_anomalies = executor.submit(detect_anomalies, filtered_df)
            future_amc = executor.submit(check_amc_reminders, filtered_df, datetime.now())

            summary = f"Step 1: Summary Report\n{summarize_logs(filtered_df)}"
            anomalies, anomalies_df = future_anomalies.result()
            anomalies = f"Anomaly Detection\n{anomalies}"
            amc_reminders, reminders_df = future_amc.result()
            amc_reminders = f"AMC Reminders\n{amc_reminders}"
            insights = f"Dashboard Insights\n{generate_dashboard_insights(filtered_df)}"

        # Generate charts sequentially
        usage_chart = create_usage_chart(filtered_df)
        downtime_chart = create_downtime_chart(filtered_df)
        daily_log_chart = create_daily_log_trends_chart(filtered_df)
        weekly_uptime_chart = create_weekly_uptime_chart(filtered_df)
        anomaly_alerts_chart = create_anomaly_alerts_chart(anomalies_df)
        device_cards = generate_device_cards(filtered_df)

        elapsed_time = time.time() - start_time
        logging.info(f"Processing completed in {elapsed_time:.2f} seconds")
        if elapsed_time > 3:
            logging.warning(f"Processing time exceeded 3 seconds: {elapsed_time:.2f} seconds")

        return (summary, preview_html, usage_chart, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart, anomalies, amc_reminders, insights, None, df, current_modified_time)
    except Exception as e:
        logging.error(f"Failed to process file: {str(e)}")
        return f"Error: {str(e)}", "<p>Error processing data.</p>", None, '<p>Error processing data.</p>', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state

# Generate PDF separately
async def generate_pdf(summary, preview_html, usage_chart, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart, anomalies, amc_reminders, insights):
    try:
        preview_df = pd.read_html(preview_html)[0]
        pdf_file = generate_pdf_content(summary, preview_df, anomalies, amc_reminders, insights, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart)
        return pdf_file
    except Exception as e:
        logging.error(f"Failed to generate PDF: {str(e)}")
        return None

# Update filters
def update_filters(file_obj, current_file_state):
    if not file_obj or file_obj.name == current_file_state:
        return gr.update(), gr.update(), current_file_state
    try:
        with open(file_obj.name, 'rb') as f:
            csv_content = f.read().decode('utf-8')
        df = pd.read_csv(io.StringIO(csv_content))
        df['timestamp'] = pd.to_datetime(df['timestamp'], errors='coerce')

        lab_site_options = ['All'] + [site for site in df['lab_site'].dropna().astype(str).unique().tolist() if site.strip()] if 'lab_site' in df.columns else ['All']
        equipment_type_options = ['All'] + [equip for equip in df['equipment_type'].dropna().astype(str).unique().tolist() if equip.strip()] if 'equipment_type' in df.columns else ['All']

        return gr.update(choices=lab_site_options, value='All'), gr.update(choices=equipment_type_options, value='All'), file_obj.name
    except Exception as e:
        logging.error(f"Failed to update filters: {str(e)}")
        return gr.update(choices=['All'], value='All'), gr.update(choices=['All'], value='All'), current_file_state

# Gradio Interface
try:
    logging.info("Initializing Gradio interface...")
    with gr.Blocks(css="""
        .dashboard-container {border: 1px solid #e0e0e0; padding: 10px; border-radius: 5px;}
        .dashboard-title {font-size: 24px; font-weight: bold; margin-bottom: 5px;}
        .dashboard-section {margin-bottom: 20px;}
        .dashboard-section h3 {font-size: 18px; margin-bottom: 2px;}
        .dashboard-section p {margin: 1px 0; line-height: 1.2;}
        .dashboard-section ul {margin: 2px 0; padding-left: 20px;}
        .table {width: 100%; border-collapse: collapse;}
        .table th, .table td {border: 1px solid #ddd; padding: 8px; text-align: left;}
        .table th {background-color: #f2f2f2;}
        .table tr:nth-child(even) {background-color: #f9f9f9;}
    """) as iface:
        gr.Markdown("<h1>LabOps Log Analyzer Dashboard</h1>")
        gr.Markdown("Upload a CSV file to analyze. Click 'Analyze' to refresh the dashboard. Use 'Export PDF' for report download.")

        last_modified_state = gr.State(value=None)
        current_file_state = gr.State(value=None)
        cached_df_state = gr.State(value=None)

        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(label="Upload Logs (CSV)", file_types=[".csv"])
                with gr.Group():
                    gr.Markdown("### Filters")
                    lab_site_filter = gr.Dropdown(label="Lab Site", choices=['All'], value='All', interactive=True)
                    equipment_type_filter = gr.Dropdown(label="Equipment Type", choices=['All'], value='All', interactive=True)
                    date_range_filter = gr.Slider(label="Date Range (Days from Today, e.g., -7 to 0 means last 7 days)", minimum=-365, maximum=0, step=1, value=[-7, 0])
                    submit_button = gr.Button("Analyze", variant="primary")
                    pdf_button = gr.Button("Export PDF", variant="secondary")

            with gr.Column(scale=2):
                with gr.Group(elem_classes="dashboard-container"):
                    gr.Markdown("<div class='dashboard-title'>Analysis Results</div>")
                    with gr.Group(elem_classes="dashboard-section"):
                        gr.Markdown("### Step 1: Summary Report")
                        summary_output = gr.Markdown()
                    with gr.Group(elem_classes="dashboard-section"):
                        gr.Markdown("### Step 2: Log Preview")
                        preview_output = gr.HTML()
                    with gr.Group(elem_classes="dashboard-section"):
                        gr.Markdown("### Device Cards")
                        device_cards_output = gr.HTML()
                    with gr.Group(elem_classes="dashboard-section"):
                        gr.Markdown("### Charts")
                        with gr.Tab("Usage Hours per Device"):
                            usage_chart_output = gr.Plot()
                        with gr.Tab("Downtime per Device"):
                            downtime_chart_output = gr.Plot()
                        with gr.Tab("Daily Log Trends"):
                            daily_log_trends_output = gr.Plot()
                        with gr.Tab("Weekly Uptime Percentage"):
                            weekly_uptime_output = gr.Plot()
                        with gr.Tab("Anomaly Alerts"):
                            anomaly_alerts_output = gr.Plot()
                    with gr.Group(elem_classes="dashboard-section"):
                        gr.Markdown("### Step 4: Anomaly Detection")
                        anomaly_output = gr.Markdown()
                    with gr.Group(elem_classes="dashboard-section"):
                        gr.Markdown("### Step 5: AMC Reminders")
                        amc_output = gr.Markdown()
                    with gr.Group(elem_classes="dashboard-section"):
                        gr.Markdown("### Step 6: Insights")
                        insights_output = gr.Markdown()
                    with gr.Group(elem_classes="dashboard-section"):
                        gr.Markdown("### Export Report")
                        pdf_output = gr.File(label="Download Status Report as PDF")

        file_input.change(
            fn=update_filters,
            inputs=[file_input, current_file_state],
            outputs=[lab_site_filter, equipment_type_filter, current_file_state],
            queue=False
        )

        submit_button.click(
            fn=process_logs,
            inputs=[file_input, lab_site_filter, equipment_type_filter, date_range_filter, cached_df_state, last_modified_state],
            outputs=[summary_output, preview_output, usage_chart_output, device_cards_output, daily_log_trends_output, weekly_uptime_output, anomaly_alerts_output, downtime_chart_output, anomaly_output, amc_output, insights_output, pdf_output, cached_df_state, last_modified_state]
        )

        pdf_button.click(
            fn=generate_pdf,
            inputs=[summary_output, preview_output, usage_chart_output, device_cards_output, daily_log_trends_output, weekly_uptime_output, anomaly_alerts_output, downtime_chart_output, anomaly_output, amc_output, insights_output],
            outputs=[pdf_output]
        )

        logging.info("Gradio interface initialized successfully")
except Exception as e:
    logging.error(f"Failed to initialize Gradio interface: {str(e)}")
    raise e

if __name__ == "__main__":
    try:
        logging.info("Launching Gradio interface...")
        iface.launch(server_name="0.0.0.0", server_port=7860, debug=True, share=False)
        logging.info("Gradio interface launched successfully")
    except Exception as e:
        logging.error(f"Failed to launch Gradio interface: {str(e)}")
        print(f"Error launching app: {str(e)}")
        raise e