import gradio as gr import pandas as pd from datetime import datetime, timedelta import logging import plotly.express as px import plotly.graph_objects as go from sklearn.ensemble import IsolationForest from concurrent.futures import ThreadPoolExecutor import os import io import time import asyncio # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Try to import reportlab try: from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib import colors reportlab_available = True logging.info("reportlab module successfully imported") except ImportError: logging.warning("reportlab module not found. PDF generation disabled.") reportlab_available = False # Summarize logs def summarize_logs(df): try: total_devices = df["device_id"].nunique() total_usage = df["usage_hours"].sum() if "usage_hours" in df.columns else 0 lab_sites = df["lab_site"].nunique() if "lab_site" in df.columns else 0 equipment_types = df["equipment_type"].nunique() if "equipment_type" in df.columns else 0 return f"{total_devices} devices processed with {total_usage:.2f} total usage hours across {lab_sites} lab sites and {equipment_types} equipment types." except Exception as e: logging.error(f"Summary generation failed: {str(e)}") return "Failed to generate summary." # Anomaly detection def detect_anomalies(df): try: if "usage_hours" not in df.columns or "downtime" not in df.columns: return "Anomaly detection requires 'usage_hours' and 'downtime' columns.", pd.DataFrame() features = df[["usage_hours", "downtime"]].fillna(0) if len(features) > 50: features = features.sample(n=50, random_state=42) iso_forest = IsolationForest(contamination=0.1, random_state=42) df["anomaly"] = iso_forest.fit_predict(features) anomalies = df[df["anomaly"] == -1][["device_id", "usage_hours", "downtime", "timestamp", "lab_site", "equipment_type"]] if anomalies.empty: return "No anomalies detected.", anomalies return "\n".join([f"- Device ID: {row['device_id']}, Usage: {row['usage_hours']}, Downtime: {row['downtime']}, Timestamp: {row['timestamp']}, Lab Site: {row['lab_site']}, Equipment Type: {row['equipment_type']}" for _, row in anomalies.head(5).iterrows()]), anomalies except Exception as e: logging.error(f"Anomaly detection failed: {str(e)}") return f"Anomaly detection failed: {str(e)}", pd.DataFrame() # AMC reminders def check_amc_reminders(df, current_date): try: if "device_id" not in df.columns or "amc_date" not in df.columns: return "AMC reminders require 'device_id' and 'amc_date' columns.", pd.DataFrame() df["amc_date"] = pd.to_datetime(df["amc_date"], errors='coerce') current_date = pd.to_datetime(current_date) df["days_to_amc"] = (df["amc_date"] - current_date).dt.days reminders = df[(df["days_to_amc"] >= 0) & (df["days_to_amc"] <= 30)][["device_id", "log_type", "status", "timestamp", "usage_hours", "downtime", "amc_date", "lab_site", "equipment_type"]] if reminders.empty: return "No AMC reminders due within the next 30 days.", reminders return "\n".join([f"- Device ID: {row['device_id']}, AMC Date: {row['amc_date']}, Lab Site: {row['lab_site']}, Equipment Type: {row['equipment_type']}" for _, row in reminders.head(5).iterrows()]), reminders except Exception as e: logging.error(f"AMC reminder generation failed: {str(e)}") return f"AMC reminder generation failed: {str(e)}", pd.DataFrame() # Dashboard insights def generate_dashboard_insights(df): try: total_devices = df["device_id"].nunique() avg_usage = df["usage_hours"].mean() if "usage_hours" in df.columns else 0 lab_sites = df["lab_site"].unique().tolist() if "lab_site" in df.columns else [] equipment_types = df["equipment_type"].unique().tolist() if "equipment_type" in df.columns else [] return f"{total_devices} devices with average usage of {avg_usage:.2f} hours. Lab Sites: {', '.join(lab_sites)}. Equipment Types: {', '.join(equipment_types)}." except Exception as e: logging.error(f"Dashboard insights generation failed: {str(e)}") return "Failed to generate insights." # Placeholder chart for empty data def create_placeholder_chart(title): fig = go.Figure() fig.add_annotation( text="No data available for this chart", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, font=dict(size=16) ) fig.update_layout(title=title, margin=dict(l=20, r=20, t=40, b=20)) return fig # Create usage chart def create_usage_chart(df): try: if df.empty or "usage_hours" not in df.columns or "device_id" not in df.columns: logging.warning("Insufficient data for usage chart") return create_placeholder_chart("Usage Hours per Device") usage_data = df.groupby("device_id")["usage_hours"].sum().reset_index() if len(usage_data) > 5: usage_data = usage_data.nlargest(5, "usage_hours") fig = px.bar( usage_data, x="device_id", y="usage_hours", title="Usage Hours per Device", labels={"device_id": "Device ID", "usage_hours": "Usage Hours"} ) fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20)) return fig except Exception as e: logging.error(f"Failed to create usage chart: {str(e)}") return create_placeholder_chart("Usage Hours per Device") # Create downtime chart def create_downtime_chart(df): try: if df.empty or "downtime" not in df.columns or "device_id" not in df.columns: logging.warning("Insufficient data for downtime chart") return create_placeholder_chart("Downtime per Device") downtime_data = df.groupby("device_id")["downtime"].sum().reset_index() if len(downtime_data) > 5: downtime_data = downtime_data.nlargest(5, "downtime") fig = px.bar( downtime_data, x="device_id", y="downtime", title="Downtime per Device", labels={"device_id": "Device ID", "downtime": "Downtime (Hours)"} ) fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20)) return fig except Exception as e: logging.error(f"Failed to create downtime chart: {str(e)}") return create_placeholder_chart("Downtime per Device") # Create daily log trends chart def create_daily_log_trends_chart(df): try: if df.empty or "timestamp" not in df.columns: logging.warning("Insufficient data for daily log trends chart") return create_placeholder_chart("Daily Log Trends") df['date'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.date daily_logs = df.groupby('date').size().reset_index(name='log_count') if daily_logs.empty: return create_placeholder_chart("Daily Log Trends") fig = px.line( daily_logs, x='date', y='log_count', title="Daily Log Trends", labels={"date": "Date", "log_count": "Number of Logs"} ) fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20)) return fig except Exception as e: logging.error(f"Failed to create daily log trends chart: {str(e)}") return create_placeholder_chart("Daily Log Trends") # Create weekly uptime chart def create_weekly_uptime_chart(df): try: if df.empty or "timestamp" not in df.columns or "usage_hours" not in df.columns or "downtime" not in df.columns: logging.warning("Insufficient data for weekly uptime chart") return create_placeholder_chart("Weekly Uptime Percentage") df['week'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.isocalendar().week df['year'] = pd.to_datetime(df['timestamp'], errors='coerce').dt.year weekly_data = df.groupby(['year', 'week']).agg({ 'usage_hours': 'sum', 'downtime': 'sum' }).reset_index() weekly_data['uptime_percent'] = (weekly_data['usage_hours'] / (weekly_data['usage_hours'] + weekly_data['downtime'])) * 100 weekly_data['year_week'] = weekly_data['year'].astype(str) + '-W' + weekly_data['week'].astype(str) if weekly_data.empty: return create_placeholder_chart("Weekly Uptime Percentage") fig = px.bar( weekly_data, x='year_week', y='uptime_percent', title="Weekly Uptime Percentage", labels={"year_week": "Year-Week", "uptime_percent": "Uptime %"} ) fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20)) return fig except Exception as e: logging.error(f"Failed to create weekly uptime chart: {str(e)}") return create_placeholder_chart("Weekly Uptime Percentage") # Create anomaly alerts chart def create_anomaly_alerts_chart(anomalies_df): try: if anomalies_df is None or anomalies_df.empty or "timestamp" not in anomalies_df.columns: logging.warning("Insufficient data for anomaly alerts chart") return create_placeholder_chart("Anomaly Alerts Over Time") anomalies_df['date'] = pd.to_datetime(anomalies_df['timestamp'], errors='coerce').dt.date anomaly_counts = anomalies_df.groupby('date').size().reset_index(name='anomaly_count') if anomaly_counts.empty: return create_placeholder_chart("Anomaly Alerts Over Time") fig = px.scatter( anomaly_counts, x='date', y='anomaly_count', title="Anomaly Alerts Over Time", labels={"date": "Date", "anomaly_count": "Number of Anomalies"} ) fig.update_layout(title_font_size=16, margin=dict(l=20, r=20, t=40, b=20)) return fig except Exception as e: logging.error(f"Failed to create anomaly alerts chart: {str(e)}") return create_placeholder_chart("Anomaly Alerts Over Time") # Generate device cards def generate_device_cards(df): try: if df.empty: return '

No devices available to display.

' device_stats = df.groupby('device_id').agg({ 'status': 'last', 'timestamp': 'max', 'lab_site': 'last', 'equipment_type': 'last' }).reset_index() device_stats['count'] = df.groupby('device_id').size().reindex(device_stats['device_id']).values device_stats['health'] = device_stats['status'].map({ 'Active': 'Healthy', 'Inactive': 'Unhealthy', 'Pending': 'Warning' }).fillna('Unknown') cards_html = '
' for _, row in device_stats.iterrows(): health_color = {'Healthy': 'green', 'Unhealthy': 'red', 'Warning': 'orange', 'Unknown': 'gray'}.get(row['health'], 'gray') timestamp_str = str(row['timestamp']) if pd.notna(row['timestamp']) else 'Unknown' lab_site = row['lab_site'] if pd.notna(row['lab_site']) else 'Unknown' equipment_type = row['equipment_type'] if pd.notna(row['equipment_type']) else 'Unknown' cards_html += f"""

Device: {row['device_id']}

Health: {row['health']}

Lab Site: {lab_site}

Equipment Type: {equipment_type}

Usage Count: {row['count']}

Last Log: {timestamp_str}

""" cards_html += '
' return cards_html except Exception as e: logging.error(f"Failed to generate device cards: {str(e)}") return f'

Error generating device cards: {str(e)}

' # Generate PDF content def generate_pdf_content(summary, preview_df, anomalies, amc_reminders, insights, device_cards_html, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart): if not reportlab_available: return None try: pdf_path = f"status_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf" doc = SimpleDocTemplate(pdf_path, pagesize=letter) styles = getSampleStyleSheet() story = [] def safe_paragraph(text, style): return Paragraph(str(text).replace('\n', '
'), style) if text else Paragraph("", style) story.append(Paragraph("LabOps Status Report", styles['Title'])) story.append(Paragraph(f"Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal'])) story.append(Spacer(1, 12)) story.append(Paragraph("Summary Report", styles['Heading2'])) story.append(safe_paragraph(summary, styles['Normal'])) story.append(Spacer(1, 12)) story.append(Paragraph("Log Preview", styles['Heading2'])) if not preview_df.empty: data = [preview_df.columns.tolist()] + preview_df.head(5).values.tolist() table = Table(data) table.setStyle(TableStyle([ ('BACKGROUND', (0, 0), (-1, 0), colors.grey), ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), ('FONTSIZE', (0, 0), (-1, 0), 12), ('BOTTOMPADDING', (0, 0), (-1, 0), 12), ('BACKGROUND', (0, 1), (-1, -1), colors.beige), ('TEXTCOLOR', (0, 1), (-1, -1), colors.black), ('FONTNAME', (0, 1), (-1, -1), 'Helvetica'), ('FONTSIZE', (0, 1), (-1, -1), 10), ('GRID', (0, 0), (-1, -1), 1, colors.black) ])) story.append(table) else: story.append(safe_paragraph("No preview available.", styles['Normal'])) story.append(Spacer(1, 12)) story.append(Paragraph("Device Cards", styles['Heading2'])) device_cards_text = device_cards_html.replace('
', '').replace('
', '\n').replace('

', '').replace('

', '\n').replace('

', '').replace('

', '\n').replace('', '').replace('', '').replace('', '').replace('', '').replace('', '').replace('', '').replace('', '') story.append(safe_paragraph(device_cards_text, styles['Normal'])) story.append(Spacer(1, 12)) story.append(Paragraph("Anomaly Detection", styles['Heading2'])) story.append(safe_paragraph(anomalies, styles['Normal'])) story.append(Spacer(1, 12)) story.append(Paragraph("AMC Reminders", styles['Heading2'])) story.append(safe_paragraph(amc_reminders, styles['Normal'])) story.append(Spacer(1, 12)) story.append(Paragraph("Dashboard Insights", styles['Heading2'])) story.append(safe_paragraph(insights, styles['Normal'])) story.append(Spacer(1, 12)) story.append(Paragraph("Charts", styles['Heading2'])) story.append(Paragraph("[Chart placeholders - see dashboard for visuals]", styles['Normal'])) doc.build(story) logging.info(f"PDF generated at {pdf_path}") return pdf_path except Exception as e: logging.error(f"Failed to generate PDF: {str(e)}") return None # Main processing function async def process_logs(file_obj, lab_site_filter, equipment_type_filter, date_range, cached_df_state, last_modified_state): start_time = time.time() try: if not file_obj: return "No file uploaded.", "

No data available.

", None, '

No device cards available.

', None, None, None, None, "No anomalies detected.", "No AMC reminders.", "No insights generated.", None, cached_df_state, last_modified_state file_path = file_obj.name current_modified_time = os.path.getmtime(file_path) # Read file only if it's new or modified if cached_df_state is None or current_modified_time != last_modified_state: logging.info(f"Processing new or modified file: {file_path}") if not file_path.endswith(".csv"): return "Please upload a CSV file.", "

Invalid file format.

", None, '

No device cards available.

', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state required_columns = ["device_id", "log_type", "status", "timestamp", "usage_hours", "downtime", "amc_date"] dtypes = { "device_id": "string", "log_type": "string", "status": "string", "usage_hours": "float32", "downtime": "float32", "amc_date": "string", "lab_site": "string", "equipment_type": "string" } df = pd.read_csv(file_path, dtype=dtypes) missing_columns = [col for col in required_columns if col not in df.columns] if missing_columns: return f"Missing columns: {missing_columns}", "

Missing required columns.

", None, '

No device cards available.

', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state df["timestamp"] = pd.to_datetime(df["timestamp"], errors='coerce') df["amc_date"] = pd.to_datetime(df["amc_date"], errors='coerce') if df["timestamp"].dt.tz is None: df["timestamp"] = df["timestamp"].dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata') if df.empty: return "No data available.", "

No data available.

", None, '

No device cards available.

', None, None, None, None, "", "", "", None, df, current_modified_time else: df = cached_df_state # Apply filters filtered_df = df.copy() if lab_site_filter and lab_site_filter != 'All' and 'lab_site' in filtered_df.columns: filtered_df = filtered_df[filtered_df['lab_site'] == lab_site_filter] if equipment_type_filter and equipment_type_filter != 'All' and 'equipment_type' in filtered_df.columns: filtered_df = filtered_df[filtered_df['equipment_type'] == equipment_type_filter] if date_range and len(date_range) == 2: days_start, days_end = date_range today = pd.to_datetime(datetime.now()).tz_localize('Asia/Kolkata') start_date = today + pd.Timedelta(days=days_start) end_date = today + pd.Timedelta(days=days_end) + pd.Timedelta(days=1) - pd.Timedelta(seconds=1) start_date = start_date.tz_convert('Asia/Kolkata') if start_date.tzinfo else start_date.tz_localize('Asia/Kolkata') end_date = end_date.tz_convert('Asia/Kolkata') if end_date.tzinfo else end_date.tz_localize('Asia/Kolkata') logging.info(f"Date range filter: start_date={start_date}, end_date={end_date}") logging.info(f"Before date filter: {len(filtered_df)} rows") filtered_df = filtered_df[(filtered_df['timestamp'] >= start_date) & (filtered_df['timestamp'] <= end_date)] logging.info(f"After date filter: {len(filtered_df)} rows") if filtered_df.empty: return "No data after applying filters.", "

No data after filters.

", None, '

No device cards available.

', None, None, None, None, "", "", "", None, df, current_modified_time # Generate table for preview preview_df = filtered_df[['device_id', 'log_type', 'status', 'timestamp', 'usage_hours', 'downtime', 'amc_date', 'lab_site', 'equipment_type']].head(5) preview_html = preview_df.to_html(index=False, classes='table table-striped', border=0) # Run critical tasks concurrently with ThreadPoolExecutor(max_workers=2) as executor: future_anomalies = executor.submit(detect_anomalies, filtered_df) future_amc = executor.submit(check_amc_reminders, filtered_df, datetime.now()) summary = f"Step 1: Summary Report\n{summarize_logs(filtered_df)}" anomalies, anomalies_df = future_anomalies.result() anomalies = f"Anomaly Detection\n{anomalies}" amc_reminders, reminders_df = future_amc.result() amc_reminders = f"AMC Reminders\n{amc_reminders}" insights = f"Dashboard Insights\n{generate_dashboard_insights(filtered_df)}" # Generate charts sequentially usage_chart = create_usage_chart(filtered_df) downtime_chart = create_downtime_chart(filtered_df) daily_log_chart = create_daily_log_trends_chart(filtered_df) weekly_uptime_chart = create_weekly_uptime_chart(filtered_df) anomaly_alerts_chart = create_anomaly_alerts_chart(anomalies_df) device_cards = generate_device_cards(filtered_df) elapsed_time = time.time() - start_time logging.info(f"Processing completed in {elapsed_time:.2f} seconds") if elapsed_time > 3: logging.warning(f"Processing time exceeded 3 seconds: {elapsed_time:.2f} seconds") return (summary, preview_html, usage_chart, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart, anomalies, amc_reminders, insights, None, df, current_modified_time) except Exception as e: logging.error(f"Failed to process file: {str(e)}") return f"Error: {str(e)}", "

Error processing data.

", None, '

Error processing data.

', None, None, None, None, "", "", "", None, cached_df_state, last_modified_state # Generate PDF separately async def generate_pdf(summary, preview_html, usage_chart, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart, anomalies, amc_reminders, insights): try: preview_df = pd.read_html(preview_html)[0] pdf_file = generate_pdf_content(summary, preview_df, anomalies, amc_reminders, insights, device_cards, daily_log_chart, weekly_uptime_chart, anomaly_alerts_chart, downtime_chart) return pdf_file except Exception as e: logging.error(f"Failed to generate PDF: {str(e)}") return None # Update filters def update_filters(file_obj, current_file_state): if not file_obj or file_obj.name == current_file_state: return gr.update(), gr.update(), current_file_state try: with open(file_obj.name, 'rb') as f: csv_content = f.read().decode('utf-8') df = pd.read_csv(io.StringIO(csv_content)) df['timestamp'] = pd.to_datetime(df['timestamp'], errors='coerce') lab_site_options = ['All'] + [site for site in df['lab_site'].dropna().astype(str).unique().tolist() if site.strip()] if 'lab_site' in df.columns else ['All'] equipment_type_options = ['All'] + [equip for equip in df['equipment_type'].dropna().astype(str).unique().tolist() if equip.strip()] if 'equipment_type' in df.columns else ['All'] return gr.update(choices=lab_site_options, value='All'), gr.update(choices=equipment_type_options, value='All'), file_obj.name except Exception as e: logging.error(f"Failed to update filters: {str(e)}") return gr.update(choices=['All'], value='All'), gr.update(choices=['All'], value='All'), current_file_state # Gradio Interface try: logging.info("Initializing Gradio interface...") with gr.Blocks(css=""" .dashboard-container {border: 1px solid #e0e0e0; padding: 10px; border-radius: 5px;} .dashboard-title {font-size: 24px; font-weight: bold; margin-bottom: 5px;} .dashboard-section {margin-bottom: 20px;} .dashboard-section h3 {font-size: 18px; margin-bottom: 2px;} .dashboard-section p {margin: 1px 0; line-height: 1.2;} .dashboard-section ul {margin: 2px 0; padding-left: 20px;} .table {width: 100%; border-collapse: collapse;} .table th, .table td {border: 1px solid #ddd; padding: 8px; text-align: left;} .table th {background-color: #f2f2f2;} .table tr:nth-child(even) {background-color: #f9f9f9;} """) as iface: gr.Markdown("

LabOps Log Analyzer Dashboard

") gr.Markdown("Upload a CSV file to analyze. Click 'Analyze' to refresh the dashboard. Use 'Export PDF' for report download.") last_modified_state = gr.State(value=None) current_file_state = gr.State(value=None) cached_df_state = gr.State(value=None) with gr.Row(): with gr.Column(scale=1): file_input = gr.File(label="Upload Logs (CSV)", file_types=[".csv"]) with gr.Group(): gr.Markdown("### Filters") lab_site_filter = gr.Dropdown(label="Lab Site", choices=['All'], value='All', interactive=True) equipment_type_filter = gr.Dropdown(label="Equipment Type", choices=['All'], value='All', interactive=True) date_range_filter = gr.Slider(label="Date Range (Days from Today, e.g., -7 to 0 means last 7 days)", minimum=-365, maximum=0, step=1, value=[-7, 0]) submit_button = gr.Button("Analyze", variant="primary") pdf_button = gr.Button("Export PDF", variant="secondary") with gr.Column(scale=2): with gr.Group(elem_classes="dashboard-container"): gr.Markdown("
Analysis Results
") with gr.Group(elem_classes="dashboard-section"): gr.Markdown("### Step 1: Summary Report") summary_output = gr.Markdown() with gr.Group(elem_classes="dashboard-section"): gr.Markdown("### Step 2: Log Preview") preview_output = gr.HTML() with gr.Group(elem_classes="dashboard-section"): gr.Markdown("### Device Cards") device_cards_output = gr.HTML() with gr.Group(elem_classes="dashboard-section"): gr.Markdown("### Charts") with gr.Tab("Usage Hours per Device"): usage_chart_output = gr.Plot() with gr.Tab("Downtime per Device"): downtime_chart_output = gr.Plot() with gr.Tab("Daily Log Trends"): daily_log_trends_output = gr.Plot() with gr.Tab("Weekly Uptime Percentage"): weekly_uptime_output = gr.Plot() with gr.Tab("Anomaly Alerts"): anomaly_alerts_output = gr.Plot() with gr.Group(elem_classes="dashboard-section"): gr.Markdown("### Step 4: Anomaly Detection") anomaly_output = gr.Markdown() with gr.Group(elem_classes="dashboard-section"): gr.Markdown("### Step 5: AMC Reminders") amc_output = gr.Markdown() with gr.Group(elem_classes="dashboard-section"): gr.Markdown("### Step 6: Insights") insights_output = gr.Markdown() with gr.Group(elem_classes="dashboard-section"): gr.Markdown("### Export Report") pdf_output = gr.File(label="Download Status Report as PDF") file_input.change( fn=update_filters, inputs=[file_input, current_file_state], outputs=[lab_site_filter, equipment_type_filter, current_file_state], queue=False ) submit_button.click( fn=process_logs, inputs=[file_input, lab_site_filter, equipment_type_filter, date_range_filter, cached_df_state, last_modified_state], outputs=[summary_output, preview_output, usage_chart_output, device_cards_output, daily_log_trends_output, weekly_uptime_output, anomaly_alerts_output, downtime_chart_output, anomaly_output, amc_output, insights_output, pdf_output, cached_df_state, last_modified_state] ) pdf_button.click( fn=generate_pdf, inputs=[summary_output, preview_output, usage_chart_output, device_cards_output, daily_log_trends_output, weekly_uptime_output, anomaly_alerts_output, downtime_chart_output, anomaly_output, amc_output, insights_output], outputs=[pdf_output] ) logging.info("Gradio interface initialized successfully") except Exception as e: logging.error(f"Failed to initialize Gradio interface: {str(e)}") raise e if __name__ == "__main__": try: logging.info("Launching Gradio interface...") iface.launch(server_name="0.0.0.0", server_port=7860, debug=True, share=False) logging.info("Gradio interface launched successfully") except Exception as e: logging.error(f"Failed to launch Gradio interface: {str(e)}") print(f"Error launching app: {str(e)}") raise e