File size: 8,217 Bytes
36459c4
6eaa3dc
e2b7de3
 
 
36459c4
e2b7de3
 
 
 
221e826
de27e81
 
221e826
13ed916
e2b7de3
 
de27e81
e2b7de3
de27e81
 
 
13ed916
e2b7de3
 
13ed916
e2b7de3
de27e81
 
952210b
e2b7de3
 
6eaa3dc
de27e81
e2b7de3
684911e
e2b7de3
 
0d752e6
e2b7de3
 
 
0d752e6
e2b7de3
 
8846627
e2b7de3
 
 
 
 
 
de27e81
221e826
e2b7de3
de27e81
e2b7de3
de27e81
 
 
 
 
 
e2b7de3
de27e81
e2b7de3
de27e81
 
 
 
 
e2b7de3
de27e81
e2b7de3
de27e81
e2b7de3
 
de27e81
e2b7de3
 
 
 
de27e81
e2b7de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de27e81
e2b7de3
 
 
 
 
 
08fef74
e2b7de3
 
221e826
e2b7de3
 
 
 
 
36459c4
e2b7de3
 
 
 
 
221e826
e2b7de3
 
36459c4
e2b7de3
 
 
 
 
 
 
 
 
 
 
de27e81
e2b7de3
 
 
 
 
 
 
 
 
 
 
 
de27e81
 
 
 
e2b7de3
 
 
 
de27e81
e2b7de3
 
 
 
de27e81
e2b7de3
 
 
 
 
 
 
 
 
 
 
de27e81
e2b7de3
de27e81
e2b7de3
 
 
 
 
 
 
de27e81
e2b7de3
 
de27e81
e2b7de3
 
 
 
 
 
 
36459c4
e2b7de3
 
36459c4
e2b7de3
 
36459c4
e2b7de3
 
de27e81
e2b7de3
36459c4
 
e2b7de3
36459c4
221e826
 
de27e81
e2b7de3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
from datetime import datetime, timedelta
import os
import logging
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import tempfile

# Configure logging to match the log format
logging.basicConfig(level=logging.INFO, format='%(asctime)s,%(msecs)03d - %(levelname)s - %(message)s')

def process_files(uploaded_files):
    """
    Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
    Returns a dataframe, plot path, PDF path, and AMC expiry message.
    """
    # Log received files
    logging.info(f"Received uploaded files: {uploaded_files}")

    if not uploaded_files:
        logging.warning("No files uploaded.")
        return None, None, None, "Please upload at least one valid CSV file."

    valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
    logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")

    if not valid_files:
        logging.warning("No valid CSV files uploaded.")
        return None, None, None, "Please upload at least one valid CSV file."

    logging.info("Loading logs from uploaded files...")
    all_data = []

    # Load and combine CSV files
    for file in valid_files:
        try:
            df = pd.read_csv(file.name)
            logging.info(f"Loaded {len(df)} records from {file.name}")
            all_data.append(df)
        except Exception as e:
            logging.error(f"Failed to load {file.name}: {str(e)}")
            return None, None, None, f"Error loading {file.name}: {str(e)}"

    if not all_data:
        logging.warning("No data loaded from uploaded files.")
        return None, None, None, "No valid data found in uploaded files."

    combined_df = pd.concat(all_data, ignore_index=True)
    logging.info(f"Combined {len(combined_df)} total records.")
    logging.info(f"Loaded {len(combined_df)} log records from uploaded files.")

    # Generate usage plot
    logging.info("Generating usage plot...")
    plot_path = generate_usage_plot(combined_df)
    if plot_path:
        logging.info("Usage plot generated successfully.")
    else:
        logging.error("Failed to generate usage plot.")
        return combined_df, None, None, "Failed to generate usage plot."

    # Detect anomalies
    logging.info("Detecting anomalies...")
    anomaly_df = detect_anomalies(combined_df)
    if anomaly_df is None:
        logging.error("Failed to detect anomalies.")
    else:
        logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies.")

    # Process AMC expiries
    logging.info("Processing AMC expiries...")
    amc_message, amc_df = process_amc_expiries(combined_df)

    # Generate PDF report
    pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)

    # Prepare output dataframe (combine original data with anomalies)
    output_df = combined_df.copy()
    if anomaly_df is not None:
        output_df['anomaly'] = anomaly_df['anomaly']

    return output_df, plot_path, pdf_path, amc_message

def generate_usage_plot(df):
    """
    Generate a bar plot of usage_count by equipment and status.
    Returns the path to the saved plot.
    """
    try:
        plt.figure(figsize=(10, 6))
        for status in df['status'].unique():
            subset = df[df['status'] == status]
            plt.bar(subset['equipment'] + f" ({status})", subset['usage_count'], label=status)
        plt.xlabel("Equipment (Status)")
        plt.ylabel("Usage Count")
        plt.title("Usage Count by Equipment and Status")
        plt.legend()
        plt.xticks(rotation=45)
        plt.tight_layout()

        # Save plot to temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
            plt.savefig(tmp.name, format='png')
            plot_path = tmp.name
        plt.close()
        return plot_path
    except Exception as e:
        logging.error(f"Failed to generate usage plot: {str(e)}")
        return None

def detect_anomalies(df):
    """
    Detect anomalies in usage_count using Isolation Forest.
    Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
    """
    try:
        model = IsolationForest(contamination=0.1, random_state=42)
        anomalies = model.fit_predict(df[['usage_count']].values)
        anomaly_df = df.copy()
        anomaly_df['anomaly'] = anomalies
        return anomaly_df
    except Exception as e:
        logging.error(f"Failed to detect anomalies: {str(e)}")
        return None

def process_amc_expiries(df):
    """
    Identify devices with AMC expiries within 7 days from 2025-06-05.
    Returns a message and a dataframe of devices with upcoming expiries.
    """
    try:
        current_date = datetime(2025, 6, 5)
        threshold = current_date + timedelta(days=7)
        df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
        upcoming_expiries = df[df['amc_expiry'] <= threshold]
        unique_devices = upcoming_expiries['equipment'].unique()
        message = f"Found {len(unique_devices)} devices with upcoming AMC expiries."
        logging.info(message)
        return message, upcoming_expiries
    except Exception as e:
        logging.error(f"Failed to process AMC expiries: {str(e)}")
        return f"Error processing AMC expiries: {str(e)}", None

def generate_pdf_report(original_df, anomaly_df, amc_df):
    """
    Generate a PDF report with data summary, anomalies, and AMC expiries.
    Returns the path to the saved PDF.
    """
    try:
        if original_df is None:
            logging.warning("No data available for PDF generation.")
            return None

        with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
            c = canvas.Canvas(tmp.name, pagesize=letter)
            c.drawString(100, 750, "Equipment Log Analysis Report")
            y = 700

            # Summary
            c.drawString(100, y, f"Total Records: {len(original_df)}")
            c.drawString(100, y-20, f"Devices: {', '.join(original_df['equipment'].unique())}")
            y -= 40

            # Anomalies
            if anomaly_df is not None:
                num_anomalies = sum(anomaly_df['anomaly'] == -1)
                c.drawString(100, y, f"Anomalies Detected: {num_anomalies}")
                if num_anomalies > 0:
                    anomaly_equipment = anomaly_df[anomaly_df['anomaly'] == -1]['equipment'].unique()
                    c.drawString(100, y-20, f"Anomalous Devices: {', '.join(anomaly_equipment)}")
                y -= 40
            else:
                c.drawString(100, y, "Anomaly detection failed.")
                y -= 20

            # AMC Expiries
            if amc_df is not None and not amc_df.empty:
                c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}")
                for _, row in amc_df.iterrows():
                    c.drawString(100, y-20, f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}")
                    y -= 20
            else:
                c.drawString(100, y, "No AMC expiry data available.")
                y -= 20

            c.showPage()
            c.save()
            return tmp.name
    except Exception as e:
        logging.error(f"Failed to generate PDF report: {str(e)}")
        return None

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Equipment Log Analysis")
    with gr.Row():
        file_input = gr.File(file_count="multiple", label="Upload CSV Files")
        process_button = gr.Button("Process Files")
    with gr.Row():
        output_df = gr.Dataframe(label="Processed Data")
        output_plot = gr.Image(label="Usage Plot")
    with gr.Row():
        output_message = gr.Textbox(label="AMC Expiry Status")
        output_pdf = gr.File(label="Download PDF Report")

    process_button.click(
        fn=process_files,
        inputs=[file_input],
        outputs=[output_df, output_plot, output_pdf, output_message]
    )

if __name__ == "__main__":
    logging.info("Application starting...")
    demo.launch(server_name="0.0.0.0", server_port=7860)