MaheshP98's picture
Update app.py
9edd269 verified
raw
history blame
7.74 kB
import streamlit as st
import pandas as pd
import plotly.express as px
from datetime import datetime, timedelta
from simple_salesforce import Salesforce
from transformers import pipeline
from utils import fetch_salesforce_data, detect_anomalies, generate_pdf_report
import os
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Streamlit app configuration
try:
st.set_page_config(page_title="LabOps Dashboard", layout="wide")
logger.info("Streamlit page configuration set successfully.")
except Exception as e:
logger.error(f"Failed to set Streamlit page configuration: {e}")
raise
# Cache Salesforce connection
@st.cache_resource
def init_salesforce():
logger.info("Initializing Salesforce connection...")
try:
sf = Salesforce(
username=os.getenv("SF_USERNAME", st.secrets.get("sf_username")),
password=os.getenv("SF_PASSWORD", st.secrets.get("sf_password")),
security_token=os.getenv("SF_SECURITY_TOKEN", st.secrets.get("sf_security_token"))
)
logger.info("Salesforce connection initialized successfully.")
return sf
except Exception as e:
logger.error(f"Failed to initialize Salesforce: {e}")
st.error(f"Cannot connect to Salesforce: {e}")
return None
# Cache Hugging Face model
@st.cache_resource
def init_anomaly_detector():
logger.info("Initializing anomaly detector...")
try:
# Use lighter model for Hugging Face Spaces
detector = pipeline(
"text-classification",
model="prajjwal1/bert-tiny",
tokenizer="prajjwal1/bert-tiny",
clean_up_tokenization_spaces=True
)
logger.info("Anomaly detector initialized successfully.")
return detector
except Exception as e:
logger.error(f"Failed to initialize anomaly detector: {e}")
st.error(f"Cannot initialize anomaly detector: {e}")
return None
# Initialize connections
sf = init_salesforce()
anomaly_detector = init_anomaly_detector()
# Cache data fetching
@st.cache_data(ttl=10)
def get_filtered_data(lab_site, equipment_type, date_start, date_end):
logger.info(f"Fetching data for lab: {lab_site}, equipment: {equipment_type}, date range: {date_start} to {date_end}")
try:
query = f"""
SELECT Equipment__c, Log_Timestamp__c, Status__c, Usage_Count__c, Lab__c, Equipment_Type__c
FROM SmartLog__c
WHERE Log_Timestamp__c >= {date_start.strftime('%Y-%m-%d')}
AND Log_Timestamp__c <= {date_end.strftime('%Y-%m-%d')}
"""
if lab_site != "All":
query += f" AND Lab__c = '{lab_site}'"
if equipment_type != "All":
query += f" AND Equipment_Type__c = '{equipment_type}'"
query += " LIMIT 100"
data = fetch_salesforce_data(sf, query)
logger.info(f"Fetched {len(data)} records from Salesforce.")
return data
except Exception as e:
logger.error(f"Failed to fetch data: {e}")
return []
def main():
logger.info("Starting main application...")
if sf is None or anomaly_detector is None:
st.error("Application cannot start due to initialization failures. Check logs for details.")
logger.error("Application initialization failed: Salesforce or anomaly detector not available.")
return
st.title("Multi-Device LabOps Dashboard")
# Filters
col1, col2 = st.columns(2)
with col1:
lab_site = st.selectbox("Select Lab Site", ["All", "Lab1", "Lab2", "Lab3"])
with col2:
equipment_type = st.selectbox("Equipment Type", ["All", "Cell Analyzer", "Weight Log", "UV Verification"])
date_range = st.date_input("Date Range", [datetime.now() - timedelta(days=7), datetime.now()])
if len(date_range) != 2:
st.warning("Please select a valid date range.")
logger.warning("Invalid date range selected.")
return
date_start, date_end = date_range
# Fetch and process data
with st.spinner("Fetching data..."):
data = get_filtered_data(lab_site, equipment_type, date_start, date_end)
if not data:
st.warning("No data available for the selected filters.")
logger.warning("No data returned for the selected filters.")
return
df = pd.DataFrame(data)
df["Log_Timestamp__c"] = pd.to_datetime(df["Log_Timestamp__c"])
df["Anomaly"] = df.apply(
lambda row: detect_anomalies(f"{row['Status__c']} Usage:{row['Usage_Count__c']}", anomaly_detector),
axis=1
)
# Pagination
page_size = 10
total_pages = max(1, len(df) // page_size + (1 if len(df) % page_size else 0))
page = st.number_input("Page", min_value=1, max_value=total_pages, value=1, step=1)
start_idx = (page - 1) * page_size
end_idx = start_idx + page_size
paginated_df = df[start_idx:end_idx]
# Device Cards
st.subheader("Device Status")
for _, row in paginated_df.iterrows():
anomaly = "⚠️ Anomaly" if row["Anomaly"] == "POSITIVE" else "✅ Normal"
st.markdown(f"""
**{row['Equipment__c']}** | Lab: {row['Lab__c']} | Health: {row['Status__c']} |
Usage: {row['Usage_Count__c']} | Last Log: {row['Log_Timestamp__c'].strftime('%Y-%m-%d %H:%M:%S')} | {anomaly}
""")
# Usage Chart
st.subheader("Usage Trends")
fig = px.line(
df,
x="Log_Timestamp__c",
y="Usage_Count__c",
color="Equipment__c",
title="Daily Usage Trends",
labels={"Log_Timestamp__c": "Timestamp", "Usage_Count__c": "Usage Count"}
)
fig.update_layout(xaxis_title="Timestamp", yaxis_title="Usage Count")
st.plotly_chart(fig, use_container_width=True)
# Downtime Chart
st.subheader("Downtime Patterns")
downtime_df = df[df["Status__c"] == "Down"]
if not downtime_df.empty:
fig_downtime = px.histogram(
downtime_df,
x="Log_Timestamp__c",
color="Equipment__c",
title="Downtime Patterns",
labels={"Log_Timestamp__c": "Timestamp"}
)
fig_downtime.update_layout(xaxis_title="Timestamp", yaxis_title="Downtime Count")
st.plotly_chart(fig_downtime, use_container_width=True)
else:
st.info("No downtime events found for the selected filters.")
# AMC Reminders
st.subheader("AMC Reminders")
amc_query = "SELECT Equipment__c, AMC_Expiry_Date__c FROM Equipment__c WHERE AMC_Expiry_Date__c <= NEXT_N_DAYS:14"
amc_data = fetch_salesforce_data(sf, amc_query, retries=3)
if amc_data:
for record in amc_data:
st.write(f"Equipment {record['Equipment__c']} - AMC Expiry: {record['AMC_Expiry_Date__c']}")
else:
st.info("No AMC expiries within the next 14 days.")
# Export PDF
if st.button("Export PDF Report"):
with st.spinner("Generating PDF..."):
try:
pdf_file = generate_pdf_report(df, lab_site, equipment_type, [date_start, date_end])
with open(pdf_file, "rb") as f:
st.download_button("Download PDF", f, file_name="LabOps_Report.pdf", mime="application/pdf")
logger.info("PDF report generated successfully.")
except Exception as e:
st.error(f"Failed to generate PDF: {e}")
logger.error(f"Failed to generate PDF: {e}")
if __name__ == "__main__":
try:
logger.info("Application starting...")
main()
except Exception as e:
logger.error(f"Application failed to start: {e}")
raise