Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,102 @@ import tempfile
|
|
13 |
# Configure logging to match the log format
|
14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s,%(msecs)03d - %(levelname)s - %(message)s')
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def validate_csv(df):
|
17 |
"""
|
18 |
Validate that the CSV has the required columns.
|
@@ -67,37 +163,57 @@ def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
|
67 |
for _, row in amc_df.iterrows():
|
68 |
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
|
69 |
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
|
70 |
-
|
71 |
-
|
|
|
72 |
else:
|
73 |
summary.append("No devices need maintenance within the next 7 days.")
|
74 |
summary.append("\n")
|
75 |
|
76 |
# Generated Reports
|
77 |
summary.append("## Generated Reports")
|
78 |
-
summary.append("- **Usage Chart**:
|
79 |
-
summary.append("- **PDF Report**:
|
80 |
|
81 |
return "\n".join(summary)
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def process_files(uploaded_files):
|
84 |
"""
|
85 |
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
86 |
-
Returns a dataframe, plot path, PDF path, AMC expiry message, and
|
87 |
"""
|
88 |
# Log received files
|
89 |
logging.info(f"Received uploaded files: {uploaded_files}")
|
90 |
|
91 |
if not uploaded_files:
|
92 |
logging.warning("No files uploaded.")
|
93 |
-
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo files uploaded."
|
94 |
|
95 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
96 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
97 |
|
98 |
if not valid_files:
|
99 |
logging.warning("No valid CSV files uploaded.")
|
100 |
-
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo valid CSV files uploaded."
|
101 |
|
102 |
logging.info("Loading logs from uploaded files...")
|
103 |
all_data = []
|
@@ -111,15 +227,15 @@ def process_files(uploaded_files):
|
|
111 |
is_valid, error_msg = validate_csv(df)
|
112 |
if not is_valid:
|
113 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
114 |
-
return None, None, None, f"Error loading {file.name}: {error_msg}", f"## Summary\nError: {error_msg}"
|
115 |
all_data.append(df)
|
116 |
except Exception as e:
|
117 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
118 |
-
return None, None, None, f"Error loading {file.name}: {str(e)}", f"## Summary\nError: {str(e)}"
|
119 |
|
120 |
if not all_data:
|
121 |
logging.warning("No data loaded from uploaded files.")
|
122 |
-
return None, None, None, "No valid data found in uploaded files.", "## Summary\nNo data loaded."
|
123 |
|
124 |
combined_df = pd.concat(all_data, ignore_index=True)
|
125 |
logging.info(f"Combined {len(combined_df)} total records.")
|
@@ -132,7 +248,7 @@ def process_files(uploaded_files):
|
|
132 |
logging.info("Usage plot generated successfully.")
|
133 |
else:
|
134 |
logging.error("Failed to generate usage plot.")
|
135 |
-
return combined_df, None, None, "Failed to generate usage plot.", "## Summary\nUsage plot generation failed."
|
136 |
|
137 |
# Detect anomalies using Local Outlier Factor
|
138 |
logging.info("Detecting anomalies using Local Outlier Factor...")
|
@@ -159,12 +275,17 @@ def process_files(uploaded_files):
|
|
159 |
summary = generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path)
|
160 |
logging.info("Summary generated successfully.")
|
161 |
|
|
|
|
|
|
|
|
|
|
|
162 |
# Prepare output dataframe (combine original data with anomalies)
|
163 |
output_df = combined_df.copy()
|
164 |
if anomaly_df is not None:
|
165 |
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
|
166 |
|
167 |
-
return output_df, plot_path, pdf_path, amc_message, summary
|
168 |
|
169 |
def generate_usage_plot(df):
|
170 |
"""
|
@@ -237,7 +358,7 @@ def process_amc_expiries(df):
|
|
237 |
|
238 |
def generate_pdf_report(original_df, anomaly_df, amc_df):
|
239 |
"""
|
240 |
-
Generate a professionally formatted PDF report with necessary fields and a flowchart.
|
241 |
Returns the path to the saved PDF.
|
242 |
"""
|
243 |
try:
|
@@ -337,11 +458,26 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
337 |
if amc_df is not None and not amc_df.empty:
|
338 |
c.drawString(50, y, f"Devices Needing Maintenance Soon: {len(amc_df['equipment'].unique())}")
|
339 |
y -= 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
c.setFont("Helvetica", 10)
|
341 |
for _, row in amc_df.iterrows():
|
342 |
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
|
343 |
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
|
344 |
-
|
|
|
|
|
|
|
|
|
|
|
345 |
y -= 20
|
346 |
if y < 50:
|
347 |
c.showPage()
|
@@ -349,7 +485,7 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
349 |
draw_header()
|
350 |
c.setFont("Helvetica", 10)
|
351 |
c.setFont("Helvetica-Oblique", 10)
|
352 |
-
c.drawString(50, y, "
|
353 |
y -= 20
|
354 |
else:
|
355 |
c.drawString(50, y, "No devices need maintenance within the next 7 days.")
|
@@ -360,16 +496,20 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
360 |
y = draw_section_title("Processing Pipeline Flowchart", y)
|
361 |
c.setFont("Helvetica", 10)
|
362 |
flowchart = [
|
363 |
-
"1. Upload CSV File(s)",
|
364 |
-
"2. Validate Data
|
365 |
-
"3. Generate Usage Chart
|
366 |
-
"4. Detect Unusual Activity
|
367 |
-
"5. Check Maintenance Dates
|
368 |
-
"6. Create PDF Report
|
369 |
]
|
370 |
-
for step in flowchart:
|
371 |
c.drawString(50, y, step)
|
372 |
-
y -=
|
|
|
|
|
|
|
|
|
373 |
if y < 50:
|
374 |
c.showPage()
|
375 |
y = height - 100
|
@@ -384,24 +524,30 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
384 |
return None
|
385 |
|
386 |
# Gradio interface
|
387 |
-
with gr.Blocks() as demo:
|
388 |
gr.Markdown("# Equipment Log Analysis")
|
389 |
with gr.Row():
|
390 |
file_input = gr.File(file_count="multiple", label="Upload CSV Files")
|
391 |
process_button = gr.Button("Process Files")
|
392 |
with gr.Row():
|
393 |
-
output_summary = gr.Markdown(label="Summary of Results")
|
394 |
with gr.Row():
|
395 |
output_df = gr.Dataframe(label="Processed Data")
|
396 |
output_plot = gr.Image(label="Usage Chart")
|
397 |
with gr.Row():
|
398 |
-
output_message = gr.Textbox(label="Maintenance Alerts")
|
399 |
output_pdf = gr.File(label="Download Detailed PDF Report")
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
process_button.click(
|
402 |
fn=process_files,
|
403 |
inputs=[file_input],
|
404 |
-
outputs=[output_df, output_plot, output_pdf, output_message, output_summary]
|
405 |
)
|
406 |
|
407 |
if __name__ == "__main__":
|
|
|
13 |
# Configure logging to match the log format
|
14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s,%(msecs)03d - %(levelname)s - %(message)s')
|
15 |
|
16 |
+
# CSS styling for the Gradio interface
|
17 |
+
css = """
|
18 |
+
body {
|
19 |
+
font-family: Arial, sans-serif;
|
20 |
+
background-color: #F3F4F6;
|
21 |
+
color: #1E3A8A;
|
22 |
+
}
|
23 |
+
|
24 |
+
h1 {
|
25 |
+
color: #1E3A8A;
|
26 |
+
text-align: center;
|
27 |
+
margin-bottom: 20px;
|
28 |
+
}
|
29 |
+
|
30 |
+
.gr-button {
|
31 |
+
background-color: #1E3A8A;
|
32 |
+
color: white;
|
33 |
+
border: none;
|
34 |
+
border-radius: 5px;
|
35 |
+
padding: 10px 20px;
|
36 |
+
}
|
37 |
+
|
38 |
+
.gr-button:hover {
|
39 |
+
background-color: #2B4C9B;
|
40 |
+
}
|
41 |
+
|
42 |
+
.summary-card {
|
43 |
+
background-color: white;
|
44 |
+
border-radius: 10px;
|
45 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
46 |
+
padding: 20px;
|
47 |
+
margin: 20px 0;
|
48 |
+
}
|
49 |
+
|
50 |
+
.summary-card h2 {
|
51 |
+
color: #1E3A8A;
|
52 |
+
margin-top: 0;
|
53 |
+
}
|
54 |
+
|
55 |
+
.maintenance-alert {
|
56 |
+
background-color: white;
|
57 |
+
border-radius: 10px;
|
58 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
59 |
+
padding: 15px;
|
60 |
+
margin: 10px 0;
|
61 |
+
}
|
62 |
+
|
63 |
+
.alert-urgent {
|
64 |
+
color: #DC2626;
|
65 |
+
font-weight: bold;
|
66 |
+
}
|
67 |
+
|
68 |
+
.alert-upcoming {
|
69 |
+
color: #F59E0B;
|
70 |
+
font-weight: bold;
|
71 |
+
}
|
72 |
+
|
73 |
+
.recommendation {
|
74 |
+
font-style: italic;
|
75 |
+
color: #4B5563;
|
76 |
+
}
|
77 |
+
|
78 |
+
.flowchart {
|
79 |
+
display: flex;
|
80 |
+
flex-direction: column;
|
81 |
+
gap: 10px;
|
82 |
+
margin: 20px 0;
|
83 |
+
}
|
84 |
+
|
85 |
+
.flowchart-step {
|
86 |
+
background-color: #E5E7EB;
|
87 |
+
border-left: 5px solid #1E3A8A;
|
88 |
+
padding: 10px;
|
89 |
+
border-radius: 5px;
|
90 |
+
position: relative;
|
91 |
+
}
|
92 |
+
|
93 |
+
.flowchart-step:not(:last-child):after {
|
94 |
+
content: '↓';
|
95 |
+
position: absolute;
|
96 |
+
bottom: -20px;
|
97 |
+
left: 50%;
|
98 |
+
transform: translateX(-50%);
|
99 |
+
font-size: 20px;
|
100 |
+
color: #1E3A8A;
|
101 |
+
}
|
102 |
+
|
103 |
+
.report-preview {
|
104 |
+
background-color: white;
|
105 |
+
border-radius: 10px;
|
106 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
107 |
+
padding: 15px;
|
108 |
+
margin: 10px 0;
|
109 |
+
}
|
110 |
+
"""
|
111 |
+
|
112 |
def validate_csv(df):
|
113 |
"""
|
114 |
Validate that the CSV has the required columns.
|
|
|
163 |
for _, row in amc_df.iterrows():
|
164 |
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
|
165 |
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
|
166 |
+
urgency_class = "alert-urgent" if urgency == "Urgent" else "alert-upcoming"
|
167 |
+
summary.append(f"- <span class='{urgency_class}'>⚠️ {urgency}</span>: **{row['equipment']}** - Due on {row['amc_expiry'].strftime('%Y-%m-%d')} ({days_until_expiry} days left)")
|
168 |
+
summary.append("\n<div class='recommendation'>Recommendation: Contact the maintenance team within 24 hours for urgent alerts at support@company.com.</div>")
|
169 |
else:
|
170 |
summary.append("No devices need maintenance within the next 7 days.")
|
171 |
summary.append("\n")
|
172 |
|
173 |
# Generated Reports
|
174 |
summary.append("## Generated Reports")
|
175 |
+
summary.append("- **Usage Chart**: Visualizes usage patterns across devices, helping identify overworked or underused equipment. See below for the chart.")
|
176 |
+
summary.append("- **PDF Report**: A comprehensive report including a full data table, unusual activity details, maintenance alerts, and a detailed flowchart of our process. Download it below.")
|
177 |
|
178 |
return "\n".join(summary)
|
179 |
|
180 |
+
def generate_flowchart_html():
|
181 |
+
"""
|
182 |
+
Generate an HTML representation of the flowchart for the Gradio interface.
|
183 |
+
Returns an HTML string.
|
184 |
+
"""
|
185 |
+
steps = [
|
186 |
+
("Upload CSV File(s)", "User uploads log files in CSV format."),
|
187 |
+
("Validate Data", "Checks for required columns (equipment, usage_count, status, amc_expiry) and correct data types."),
|
188 |
+
("Generate Usage Chart", "Creates a bar chart showing usage counts by device and status (e.g., Active, Inactive)."),
|
189 |
+
("Detect Unusual Activity", "Uses Local Outlier Factor to identify devices with unusual usage patterns (e.g., too high or too low)."),
|
190 |
+
("Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05."),
|
191 |
+
("Create PDF Report", "Generates a detailed PDF with data tables, insights, and this flowchart.")
|
192 |
+
]
|
193 |
+
html = ["<div class='flowchart'>"]
|
194 |
+
for step, description in steps:
|
195 |
+
html.append(f"<div class='flowchart-step'><strong>{step}</strong><br>{description}</div>")
|
196 |
+
html.append("</div>")
|
197 |
+
return "\n".join(html)
|
198 |
+
|
199 |
def process_files(uploaded_files):
|
200 |
"""
|
201 |
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
202 |
+
Returns a dataframe, plot path, PDF path, AMC expiry message, summary, and flowchart HTML.
|
203 |
"""
|
204 |
# Log received files
|
205 |
logging.info(f"Received uploaded files: {uploaded_files}")
|
206 |
|
207 |
if not uploaded_files:
|
208 |
logging.warning("No files uploaded.")
|
209 |
+
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo files uploaded.", ""
|
210 |
|
211 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
212 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
213 |
|
214 |
if not valid_files:
|
215 |
logging.warning("No valid CSV files uploaded.")
|
216 |
+
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo valid CSV files uploaded.", ""
|
217 |
|
218 |
logging.info("Loading logs from uploaded files...")
|
219 |
all_data = []
|
|
|
227 |
is_valid, error_msg = validate_csv(df)
|
228 |
if not is_valid:
|
229 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
230 |
+
return None, None, None, f"Error loading {file.name}: {error_msg}", f"## Summary\nError: {error_msg}", ""
|
231 |
all_data.append(df)
|
232 |
except Exception as e:
|
233 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
234 |
+
return None, None, None, f"Error loading {file.name}: {str(e)}", f"## Summary\nError: {str(e)}", ""
|
235 |
|
236 |
if not all_data:
|
237 |
logging.warning("No data loaded from uploaded files.")
|
238 |
+
return None, None, None, "No valid data found in uploaded files.", "## Summary\nNo data loaded.", ""
|
239 |
|
240 |
combined_df = pd.concat(all_data, ignore_index=True)
|
241 |
logging.info(f"Combined {len(combined_df)} total records.")
|
|
|
248 |
logging.info("Usage plot generated successfully.")
|
249 |
else:
|
250 |
logging.error("Failed to generate usage plot.")
|
251 |
+
return combined_df, None, None, "Failed to generate usage plot.", "## Summary\nUsage plot generation failed.", ""
|
252 |
|
253 |
# Detect anomalies using Local Outlier Factor
|
254 |
logging.info("Detecting anomalies using Local Outlier Factor...")
|
|
|
275 |
summary = generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path)
|
276 |
logging.info("Summary generated successfully.")
|
277 |
|
278 |
+
# Generate flowchart HTML
|
279 |
+
logging.info("Generating flowchart HTML...")
|
280 |
+
flowchart_html = generate_flowchart_html()
|
281 |
+
logging.info("Flowchart HTML generated successfully.")
|
282 |
+
|
283 |
# Prepare output dataframe (combine original data with anomalies)
|
284 |
output_df = combined_df.copy()
|
285 |
if anomaly_df is not None:
|
286 |
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
|
287 |
|
288 |
+
return output_df, plot_path, pdf_path, amc_message, summary, flowchart_html
|
289 |
|
290 |
def generate_usage_plot(df):
|
291 |
"""
|
|
|
358 |
|
359 |
def generate_pdf_report(original_df, anomaly_df, amc_df):
|
360 |
"""
|
361 |
+
Generate a professionally formatted PDF report with necessary fields and a detailed flowchart.
|
362 |
Returns the path to the saved PDF.
|
363 |
"""
|
364 |
try:
|
|
|
458 |
if amc_df is not None and not amc_df.empty:
|
459 |
c.drawString(50, y, f"Devices Needing Maintenance Soon: {len(amc_df['equipment'].unique())}")
|
460 |
y -= 20
|
461 |
+
# Table headers
|
462 |
+
c.setFont("Helvetica-Bold", 10)
|
463 |
+
headers = ["Device", "Expiry Date", "Urgency", "Days Left", "Action"]
|
464 |
+
x_positions = [50, 150, 250, 350, 450]
|
465 |
+
for i, header in enumerate(headers):
|
466 |
+
c.drawString(x_positions[i], y, header)
|
467 |
+
c.line(50, y - 5, width - 50, y - 5)
|
468 |
+
y -= 20
|
469 |
+
|
470 |
+
# Table rows
|
471 |
c.setFont("Helvetica", 10)
|
472 |
for _, row in amc_df.iterrows():
|
473 |
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
|
474 |
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
|
475 |
+
action = "Contact maintenance team within 24 hours" if urgency == "Urgent" else "Schedule maintenance this week"
|
476 |
+
c.drawString(50, y, str(row['equipment']))
|
477 |
+
c.drawString(150, y, str(row['amc_expiry'].strftime('%Y-%m-%d')))
|
478 |
+
c.drawString(250, y, urgency)
|
479 |
+
c.drawString(350, y, str(days_until_expiry))
|
480 |
+
c.drawString(450, y, action)
|
481 |
y -= 20
|
482 |
if y < 50:
|
483 |
c.showPage()
|
|
|
485 |
draw_header()
|
486 |
c.setFont("Helvetica", 10)
|
487 |
c.setFont("Helvetica-Oblique", 10)
|
488 |
+
c.drawString(50, y, "Contact: Email the maintenance team at support@company.com for scheduling.")
|
489 |
y -= 20
|
490 |
else:
|
491 |
c.drawString(50, y, "No devices need maintenance within the next 7 days.")
|
|
|
496 |
y = draw_section_title("Processing Pipeline Flowchart", y)
|
497 |
c.setFont("Helvetica", 10)
|
498 |
flowchart = [
|
499 |
+
("1. Upload CSV File(s)", "User uploads log files in CSV format containing device usage data."),
|
500 |
+
("2. Validate Data", "Ensures all required columns (equipment, usage_count, status, amc_expiry) are present and data types are correct (e.g., usage_count as numeric, amc_expiry as date)."),
|
501 |
+
("3. Generate Usage Chart", "Creates a bar chart showing usage counts by device and status (e.g., Active, Inactive) to visualize usage patterns."),
|
502 |
+
("4. Detect Unusual Activity", "Uses Local Outlier Factor (LOF) algorithm to identify devices with unusual usage patterns by comparing local density of usage counts (contamination=0.1, n_neighbors=5)."),
|
503 |
+
("5. Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05, calculating days left and urgency (urgent if ≤3 days)."),
|
504 |
+
("6. Create PDF Report", "Generates this PDF with a data table, unusual activity details, maintenance alerts, and this detailed flowchart.")
|
505 |
]
|
506 |
+
for step, description in flowchart:
|
507 |
c.drawString(50, y, step)
|
508 |
+
y -= 15
|
509 |
+
c.setFont("Helvetica-Oblique", 9)
|
510 |
+
c.drawString(70, y, description)
|
511 |
+
c.setFont("Helvetica", 10)
|
512 |
+
y -= 25
|
513 |
if y < 50:
|
514 |
c.showPage()
|
515 |
y = height - 100
|
|
|
524 |
return None
|
525 |
|
526 |
# Gradio interface
|
527 |
+
with gr.Blocks(css=css) as demo:
|
528 |
gr.Markdown("# Equipment Log Analysis")
|
529 |
with gr.Row():
|
530 |
file_input = gr.File(file_count="multiple", label="Upload CSV Files")
|
531 |
process_button = gr.Button("Process Files")
|
532 |
with gr.Row():
|
533 |
+
output_summary = gr.Markdown(label="Summary of Results", elem_classes=["summary-card"])
|
534 |
with gr.Row():
|
535 |
output_df = gr.Dataframe(label="Processed Data")
|
536 |
output_plot = gr.Image(label="Usage Chart")
|
537 |
with gr.Row():
|
538 |
+
output_message = gr.Textbox(label="Maintenance Alerts", elem_classes=["maintenance-alert"])
|
539 |
output_pdf = gr.File(label="Download Detailed PDF Report")
|
540 |
+
with gr.Row():
|
541 |
+
gr.HTML(generate_flowchart_html(), label="Processing Flowchart")
|
542 |
+
with gr.Row():
|
543 |
+
gr.Markdown("## Report Previews", elem_classes=["report-preview"])
|
544 |
+
gr.Markdown("- **Usage Chart**: See the bar chart above for a visual of device usage by status.")
|
545 |
+
gr.Markdown("- **PDF Report**: Download the PDF above for a full analysis, including data tables, unusual activity, maintenance alerts, and a detailed flowchart.")
|
546 |
|
547 |
process_button.click(
|
548 |
fn=process_files,
|
549 |
inputs=[file_input],
|
550 |
+
outputs=[output_df, output_plot, output_pdf, output_message, output_summary, gr.HTML]
|
551 |
)
|
552 |
|
553 |
if __name__ == "__main__":
|