Update models/anomaly.py
Browse files- models/anomaly.py +19 -9
models/anomaly.py
CHANGED
@@ -1,24 +1,34 @@
|
|
1 |
-
import pandas as pd
|
2 |
from transformers import pipeline
|
|
|
3 |
import logging
|
4 |
|
5 |
logger = logging.getLogger(__name__)
|
6 |
|
7 |
def detect_anomalies(df):
|
8 |
-
"""Detect anomalies in
|
9 |
logger.info("Detecting anomalies...")
|
10 |
try:
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
"text-classification",
|
13 |
model="prajjwal1/bert-tiny",
|
14 |
tokenizer="prajjwal1/bert-tiny",
|
15 |
-
clean_up_tokenization_spaces=
|
16 |
)
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
return anomalies
|
23 |
except Exception as e:
|
24 |
logger.error(f"Failed to detect anomalies: {e}")
|
|
|
|
|
1 |
from transformers import pipeline
|
2 |
+
import pandas as pd
|
3 |
import logging
|
4 |
|
5 |
logger = logging.getLogger(__name__)
|
6 |
|
7 |
def detect_anomalies(df):
|
8 |
+
"""Detect anomalies in device logs using BERT-based text classification."""
|
9 |
logger.info("Detecting anomalies...")
|
10 |
try:
|
11 |
+
# Prepare text for anomaly detection
|
12 |
+
df['text'] = df.apply(lambda x: f"{x['status']} Usage:{x['usage_count']}", axis=1)
|
13 |
+
|
14 |
+
# Load BERT model for classification with explicit tokenizer parameter
|
15 |
+
classifier = pipeline(
|
16 |
"text-classification",
|
17 |
model="prajjwal1/bert-tiny",
|
18 |
tokenizer="prajjwal1/bert-tiny",
|
19 |
+
clean_up_tokenization_spaces=False # Suppress the warning and avoid the error
|
20 |
)
|
21 |
+
|
22 |
+
# Detect anomalies
|
23 |
+
results = classifier(df['text'].tolist())
|
24 |
+
|
25 |
+
# Add anomaly labels to dataframe
|
26 |
+
df['anomaly'] = [result['label'] for result in results]
|
27 |
+
|
28 |
+
# Filter for anomalies labeled as "POSITIVE"
|
29 |
+
anomalies = df[df['anomaly'] == "POSITIVE"]
|
30 |
+
|
31 |
+
logger.info(f"Detected {len(anomalies)} anomalies...")
|
32 |
return anomalies
|
33 |
except Exception as e:
|
34 |
logger.error(f"Failed to detect anomalies: {e}")
|