Update app.py
Browse files
app.py
CHANGED
@@ -15,77 +15,101 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s,%(msecs)03d - %(leve
|
|
15 |
|
16 |
# CSS styling for the Gradio interface
|
17 |
css = """
|
|
|
|
|
|
|
18 |
body {
|
19 |
-
font-family:
|
20 |
-
background-color: #
|
21 |
-
color: #
|
|
|
|
|
22 |
}
|
23 |
|
24 |
h1 {
|
25 |
-
color: #
|
26 |
text-align: center;
|
27 |
-
|
|
|
28 |
}
|
29 |
|
30 |
.gr-button {
|
31 |
-
background-color: #
|
32 |
color: white;
|
33 |
border: none;
|
34 |
-
border-radius:
|
35 |
-
padding:
|
|
|
|
|
36 |
}
|
37 |
|
38 |
.gr-button:hover {
|
39 |
-
background-color: #
|
40 |
}
|
41 |
|
42 |
-
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
background-color: white;
|
44 |
border-radius: 10px;
|
45 |
-
box-shadow: 0 4px
|
46 |
padding: 20px;
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
}
|
49 |
|
50 |
-
.
|
51 |
-
color: #
|
|
|
52 |
margin-top: 0;
|
|
|
|
|
|
|
|
|
53 |
}
|
54 |
|
55 |
-
.
|
56 |
-
background-color:
|
57 |
-
border-
|
58 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
59 |
-
padding: 15px;
|
60 |
-
margin: 10px 0;
|
61 |
}
|
62 |
|
63 |
-
.alert-
|
64 |
-
|
65 |
-
font-weight: bold;
|
66 |
}
|
67 |
|
68 |
-
.
|
69 |
-
|
70 |
-
font-weight: bold;
|
71 |
}
|
72 |
|
73 |
-
.
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
}
|
77 |
|
78 |
.flowchart {
|
79 |
display: flex;
|
80 |
flex-direction: column;
|
81 |
gap: 10px;
|
82 |
-
margin: 20px 0;
|
83 |
}
|
84 |
|
85 |
.flowchart-step {
|
86 |
-
background-color: #
|
87 |
-
border-left: 5px solid #
|
88 |
-
padding:
|
89 |
border-radius: 5px;
|
90 |
position: relative;
|
91 |
}
|
@@ -97,15 +121,83 @@ h1 {
|
|
97 |
left: 50%;
|
98 |
transform: translateX(-50%);
|
99 |
font-size: 20px;
|
100 |
-
color: #
|
101 |
}
|
102 |
|
103 |
-
.
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
}
|
110 |
"""
|
111 |
|
@@ -126,6 +218,31 @@ def validate_csv(df):
|
|
126 |
return False, f"Invalid data types: {str(e)}"
|
127 |
return True, ""
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
130 |
"""
|
131 |
Generate a detailed and easy-to-understand summary of the processing results.
|
@@ -138,21 +255,21 @@ def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
|
138 |
total_records = len(combined_df)
|
139 |
unique_devices = combined_df['equipment'].unique()
|
140 |
summary.append(f"We processed **{total_records} log entries** for **{len(unique_devices)} devices** ({', '.join(unique_devices)}).")
|
141 |
-
summary.append("This
|
142 |
|
143 |
-
#
|
144 |
-
summary.append("##
|
145 |
if anomaly_df is not None:
|
146 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
147 |
if num_anomalies > 0:
|
148 |
-
summary.append(f"
|
149 |
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
150 |
for _, row in anomaly_records.iterrows():
|
151 |
-
summary.append(f"- **{row['equipment']}** (Usage: {row['usage_count']}, Status: {row['status']}) -
|
152 |
else:
|
153 |
-
summary.append("No
|
154 |
else:
|
155 |
-
summary.append("
|
156 |
summary.append("\n")
|
157 |
|
158 |
# Maintenance Alerts (AMC Expiries)
|
@@ -173,7 +290,7 @@ def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
|
173 |
# Generated Reports
|
174 |
summary.append("## Generated Reports")
|
175 |
summary.append("- **Usage Chart**: Visualizes usage patterns across devices, helping identify overworked or underused equipment. See below for the chart.")
|
176 |
-
summary.append("- **PDF Report**: A comprehensive report including
|
177 |
|
178 |
return "\n".join(summary)
|
179 |
|
@@ -186,7 +303,7 @@ def generate_flowchart_html():
|
|
186 |
("Upload CSV File(s)", "User uploads log files in CSV format."),
|
187 |
("Validate Data", "Checks for required columns (equipment, usage_count, status, amc_expiry) and correct data types."),
|
188 |
("Generate Usage Chart", "Creates a bar chart showing usage counts by device and status (e.g., Active, Inactive)."),
|
189 |
-
("Detect
|
190 |
("Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05."),
|
191 |
("Create PDF Report", "Generates a detailed PDF with data tables, insights, and this flowchart.")
|
192 |
]
|
@@ -199,21 +316,21 @@ def generate_flowchart_html():
|
|
199 |
def process_files(uploaded_files):
|
200 |
"""
|
201 |
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
202 |
-
Returns a dataframe, plot path, PDF path, AMC expiry message, summary, and flowchart HTML.
|
203 |
"""
|
204 |
# Log received files
|
205 |
logging.info(f"Received uploaded files: {uploaded_files}")
|
206 |
|
207 |
if not uploaded_files:
|
208 |
logging.warning("No files uploaded.")
|
209 |
-
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo files uploaded.", ""
|
210 |
|
211 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
212 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
213 |
|
214 |
if not valid_files:
|
215 |
logging.warning("No valid CSV files uploaded.")
|
216 |
-
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo valid CSV files uploaded.", ""
|
217 |
|
218 |
logging.info("Loading logs from uploaded files...")
|
219 |
all_data = []
|
@@ -227,15 +344,15 @@ def process_files(uploaded_files):
|
|
227 |
is_valid, error_msg = validate_csv(df)
|
228 |
if not is_valid:
|
229 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
230 |
-
return None, None, None, f"Error loading {file.name}: {error_msg}", f"## Summary\nError: {error_msg}", ""
|
231 |
all_data.append(df)
|
232 |
except Exception as e:
|
233 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
234 |
-
return None, None, None, f"Error loading {file.name}: {str(e)}", f"## Summary\nError: {str(e)}", ""
|
235 |
|
236 |
if not all_data:
|
237 |
logging.warning("No data loaded from uploaded files.")
|
238 |
-
return None, None, None, "No valid data found in uploaded files.", "## Summary\nNo data loaded.", ""
|
239 |
|
240 |
combined_df = pd.concat(all_data, ignore_index=True)
|
241 |
logging.info(f"Combined {len(combined_df)} total records.")
|
@@ -248,7 +365,7 @@ def process_files(uploaded_files):
|
|
248 |
logging.info("Usage plot generated successfully.")
|
249 |
else:
|
250 |
logging.error("Failed to generate usage plot.")
|
251 |
-
return combined_df, None, None, "Failed to generate usage plot.", "## Summary\nUsage plot generation failed.", ""
|
252 |
|
253 |
# Detect anomalies using Local Outlier Factor
|
254 |
logging.info("Detecting anomalies using Local Outlier Factor...")
|
@@ -275,6 +392,11 @@ def process_files(uploaded_files):
|
|
275 |
summary = generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path)
|
276 |
logging.info("Summary generated successfully.")
|
277 |
|
|
|
|
|
|
|
|
|
|
|
278 |
# Generate flowchart HTML
|
279 |
logging.info("Generating flowchart HTML...")
|
280 |
flowchart_html = generate_flowchart_html()
|
@@ -285,7 +407,7 @@ def process_files(uploaded_files):
|
|
285 |
if anomaly_df is not None:
|
286 |
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
|
287 |
|
288 |
-
return output_df, plot_path, pdf_path, amc_message, summary, flowchart_html
|
289 |
|
290 |
def generate_usage_plot(df):
|
291 |
"""
|
@@ -295,18 +417,18 @@ def generate_usage_plot(df):
|
|
295 |
try:
|
296 |
plt.figure(figsize=(12, 6))
|
297 |
# Define colors for statuses
|
298 |
-
status_colors = {'Active': '#
|
299 |
for status in df['status'].unique():
|
300 |
subset = df[df['status'] == status]
|
301 |
plt.bar(
|
302 |
subset['equipment'] + f" ({status})",
|
303 |
subset['usage_count'],
|
304 |
label=status,
|
305 |
-
color=status_colors.get(status, '#
|
306 |
)
|
307 |
plt.xlabel("Equipment (Status)", fontsize=12)
|
308 |
plt.ylabel("Usage Count", fontsize=12)
|
309 |
-
plt.title("Usage
|
310 |
plt.legend(title="Status")
|
311 |
plt.xticks(rotation=45, ha='right')
|
312 |
plt.tight_layout()
|
@@ -373,7 +495,7 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
373 |
def draw_header():
|
374 |
c.setFont("Helvetica-Bold", 16)
|
375 |
c.setFillColor(colors.darkblue)
|
376 |
-
c.drawString(50, height - 50, "
|
377 |
c.setFont("Helvetica", 10)
|
378 |
c.setFillColor(colors.black)
|
379 |
c.drawString(50, height - 70, f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
@@ -398,7 +520,7 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
398 |
c.drawString(50, y, f"Unique Devices: {', '.join(original_df['equipment'].unique())}")
|
399 |
y -= 40
|
400 |
|
401 |
-
#
|
402 |
y = draw_section_title("Device Log Details", y)
|
403 |
c.setFont("Helvetica-Bold", 10)
|
404 |
headers = ["Equipment", "Usage Count", "Status", "AMC Expiry", "Activity"]
|
@@ -425,12 +547,12 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
425 |
draw_header()
|
426 |
c.setFont("Helvetica", 10)
|
427 |
|
428 |
-
#
|
429 |
-
y = draw_section_title("
|
430 |
c.setFont("Helvetica", 12)
|
431 |
if anomaly_df is not None:
|
432 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
433 |
-
c.drawString(50, y, f"
|
434 |
y -= 20
|
435 |
if num_anomalies > 0:
|
436 |
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
@@ -448,7 +570,7 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
448 |
draw_header()
|
449 |
c.setFont("Helvetica-Oblique", 10)
|
450 |
else:
|
451 |
-
c.drawString(50, y, "Unable to detect
|
452 |
y -= 20
|
453 |
y -= 20
|
454 |
|
@@ -499,9 +621,9 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
499 |
("1. Upload CSV File(s)", "User uploads log files in CSV format containing device usage data."),
|
500 |
("2. Validate Data", "Ensures all required columns (equipment, usage_count, status, amc_expiry) are present and data types are correct (e.g., usage_count as numeric, amc_expiry as date)."),
|
501 |
("3. Generate Usage Chart", "Creates a bar chart showing usage counts by device and status (e.g., Active, Inactive) to visualize usage patterns."),
|
502 |
-
("4. Detect
|
503 |
("5. Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05, calculating days left and urgency (urgent if ≤3 days)."),
|
504 |
-
("6. Create PDF Report", "Generates this PDF with a data table,
|
505 |
]
|
506 |
for step, description in flowchart:
|
507 |
c.drawString(50, y, step)
|
@@ -525,29 +647,30 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
525 |
|
526 |
# Gradio interface
|
527 |
with gr.Blocks(css=css) as demo:
|
528 |
-
gr.Markdown("#
|
529 |
-
with gr.Row():
|
530 |
-
file_input = gr.File(file_count="multiple", label="Upload CSV Files")
|
531 |
-
process_button = gr.Button("Process Files")
|
532 |
with gr.Row():
|
533 |
-
|
|
|
534 |
with gr.Row():
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
gr.
|
545 |
-
|
546 |
-
|
|
|
|
|
|
|
547 |
process_button.click(
|
548 |
fn=process_files,
|
549 |
inputs=[file_input],
|
550 |
-
outputs=[output_df, output_plot, output_pdf, output_message, output_summary, output_flowchart]
|
551 |
)
|
552 |
|
553 |
if __name__ == "__main__":
|
|
|
15 |
|
16 |
# CSS styling for the Gradio interface
|
17 |
css = """
|
18 |
+
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;500;700&display=swap');
|
19 |
+
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css');
|
20 |
+
|
21 |
body {
|
22 |
+
font-family: 'Roboto', sans-serif;
|
23 |
+
background-color: #F9FAFB;
|
24 |
+
color: #1E40AF;
|
25 |
+
margin: 0;
|
26 |
+
padding: 20px;
|
27 |
}
|
28 |
|
29 |
h1 {
|
30 |
+
color: #1E40AF;
|
31 |
text-align: center;
|
32 |
+
font-size: 2rem;
|
33 |
+
margin-bottom: 30px;
|
34 |
}
|
35 |
|
36 |
.gr-button {
|
37 |
+
background-color: #1E40AF;
|
38 |
color: white;
|
39 |
border: none;
|
40 |
+
border-radius: 8px;
|
41 |
+
padding: 12px 24px;
|
42 |
+
font-weight: 500;
|
43 |
+
transition: background-color 0.3s;
|
44 |
}
|
45 |
|
46 |
.gr-button:hover {
|
47 |
+
background-color: #3B82F6;
|
48 |
}
|
49 |
|
50 |
+
.dashboard-container {
|
51 |
+
display: grid;
|
52 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
53 |
+
gap: 20px;
|
54 |
+
max-width: 1200px;
|
55 |
+
margin: 0 auto;
|
56 |
+
}
|
57 |
+
|
58 |
+
.card {
|
59 |
background-color: white;
|
60 |
border-radius: 10px;
|
61 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
|
62 |
padding: 20px;
|
63 |
+
transition: transform 0.2s;
|
64 |
+
}
|
65 |
+
|
66 |
+
.card:hover {
|
67 |
+
transform: translateY(-5px);
|
68 |
}
|
69 |
|
70 |
+
.card h2 {
|
71 |
+
color: #1E40AF;
|
72 |
+
font-size: 1.2rem;
|
73 |
margin-top: 0;
|
74 |
+
margin-bottom: 15px;
|
75 |
+
display: flex;
|
76 |
+
align-items: center;
|
77 |
+
gap: 8px;
|
78 |
}
|
79 |
|
80 |
+
.device-card {
|
81 |
+
background-color: #EFF6FF;
|
82 |
+
border-left: 5px solid #1E40AF;
|
|
|
|
|
|
|
83 |
}
|
84 |
|
85 |
+
.alert-card {
|
86 |
+
border-left: 5px solid #EF4444;
|
|
|
87 |
}
|
88 |
|
89 |
+
.chart-container {
|
90 |
+
overflow-x: auto;
|
|
|
91 |
}
|
92 |
|
93 |
+
.dataframe-container {
|
94 |
+
max-height: 400px;
|
95 |
+
overflow-y: auto;
|
96 |
+
}
|
97 |
+
|
98 |
+
.flowchart-container {
|
99 |
+
max-height: 400px;
|
100 |
+
overflow-y: auto;
|
101 |
}
|
102 |
|
103 |
.flowchart {
|
104 |
display: flex;
|
105 |
flex-direction: column;
|
106 |
gap: 10px;
|
|
|
107 |
}
|
108 |
|
109 |
.flowchart-step {
|
110 |
+
background-color: #EFF6FF;
|
111 |
+
border-left: 5px solid #1E40AF;
|
112 |
+
padding: 15px;
|
113 |
border-radius: 5px;
|
114 |
position: relative;
|
115 |
}
|
|
|
121 |
left: 50%;
|
122 |
transform: translateX(-50%);
|
123 |
font-size: 20px;
|
124 |
+
color: #1E40AF;
|
125 |
}
|
126 |
|
127 |
+
.alert-urgent {
|
128 |
+
color: #EF4444;
|
129 |
+
font-weight: bold;
|
130 |
+
}
|
131 |
+
|
132 |
+
.alert-upcoming {
|
133 |
+
color: #F59E0B;
|
134 |
+
font-weight: bold;
|
135 |
+
}
|
136 |
+
|
137 |
+
.recommendation {
|
138 |
+
font-style: italic;
|
139 |
+
color: #4B5563;
|
140 |
+
margin-top: 10px;
|
141 |
+
}
|
142 |
+
|
143 |
+
.anomaly-badge {
|
144 |
+
display: inline-block;
|
145 |
+
padding: 5px 10px;
|
146 |
+
border-radius: 12px;
|
147 |
+
font-size: 0.9rem;
|
148 |
+
font-weight: 500;
|
149 |
+
}
|
150 |
+
|
151 |
+
.anomaly-unusual {
|
152 |
+
background-color: #FEE2E2;
|
153 |
+
color: #EF4444;
|
154 |
+
}
|
155 |
+
|
156 |
+
.anomaly-normal {
|
157 |
+
background-color: #D1FAE5;
|
158 |
+
color: #10B981;
|
159 |
+
}
|
160 |
+
|
161 |
+
.download-button {
|
162 |
+
display: inline-flex;
|
163 |
+
align-items: center;
|
164 |
+
gap: 8px;
|
165 |
+
background-color: #1E40AF;
|
166 |
+
color: white;
|
167 |
+
padding: 10px 20px;
|
168 |
+
border-radius: 8px;
|
169 |
+
text-decoration: none;
|
170 |
+
font-weight: 500;
|
171 |
+
transition: background-color 0.3s;
|
172 |
+
}
|
173 |
+
|
174 |
+
.download-button:hover {
|
175 |
+
background-color: #3B82F6;
|
176 |
+
}
|
177 |
+
|
178 |
+
/* Responsive Design */
|
179 |
+
@media (max-width: 768px) {
|
180 |
+
.dashboard-container {
|
181 |
+
grid-template-columns: 1fr;
|
182 |
+
}
|
183 |
+
|
184 |
+
h1 {
|
185 |
+
font-size: 1.5rem;
|
186 |
+
}
|
187 |
+
|
188 |
+
.card {
|
189 |
+
padding: 15px;
|
190 |
+
}
|
191 |
+
|
192 |
+
.gr-button {
|
193 |
+
width: 100%;
|
194 |
+
padding: 10px;
|
195 |
+
}
|
196 |
+
|
197 |
+
.download-button {
|
198 |
+
width: 100%;
|
199 |
+
justify-content: center;
|
200 |
+
}
|
201 |
}
|
202 |
"""
|
203 |
|
|
|
218 |
return False, f"Invalid data types: {str(e)}"
|
219 |
return True, ""
|
220 |
|
221 |
+
def generate_device_cards(df, anomaly_df):
|
222 |
+
"""
|
223 |
+
Generate HTML for device cards showing health, usage count, and status.
|
224 |
+
Returns an HTML string.
|
225 |
+
"""
|
226 |
+
if anomaly_df is not None:
|
227 |
+
df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
|
228 |
+
else:
|
229 |
+
df['anomaly'] = "Unknown"
|
230 |
+
|
231 |
+
html = []
|
232 |
+
for equipment in df['equipment'].unique():
|
233 |
+
device_data = df[df['equipment'] == equipment].iloc[-1] # Latest record
|
234 |
+
anomaly_class = "anomaly-unusual" if device_data['anomaly'] == "Unusual" else "anomaly-normal"
|
235 |
+
html.append(f"""
|
236 |
+
<div class="card device-card">
|
237 |
+
<h2><i class="fas fa-microchip"></i> {equipment}</h2>
|
238 |
+
<p><strong>Status:</strong> {device_data['status']}</p>
|
239 |
+
<p><strong>Usage Count:</strong> {device_data['usage_count']}</p>
|
240 |
+
<p><strong>Activity:</strong> <span class="anomaly-badge {anomaly_class}">{device_data['anomaly']}</span></p>
|
241 |
+
<p><strong>AMC Expiry:</strong> {device_data['amc_expiry'].strftime('%Y-%m-%d')}</p>
|
242 |
+
</div>
|
243 |
+
""")
|
244 |
+
return "\n".join(html)
|
245 |
+
|
246 |
def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
247 |
"""
|
248 |
Generate a detailed and easy-to-understand summary of the processing results.
|
|
|
255 |
total_records = len(combined_df)
|
256 |
unique_devices = combined_df['equipment'].unique()
|
257 |
summary.append(f"We processed **{total_records} log entries** for **{len(unique_devices)} devices** ({', '.join(unique_devices)}).")
|
258 |
+
summary.append("This dashboard provides real-time insights into device health, usage patterns, and maintenance needs.\n")
|
259 |
|
260 |
+
# Downtime Insights (Anomalies)
|
261 |
+
summary.append("## Downtime Insights")
|
262 |
if anomaly_df is not None:
|
263 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
264 |
if num_anomalies > 0:
|
265 |
+
summary.append(f"**{num_anomalies} potential downtime risks** detected:")
|
266 |
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
267 |
for _, row in anomaly_records.iterrows():
|
268 |
+
summary.append(f"- **{row['equipment']}** (Usage: {row['usage_count']}, Status: {row['status']}) - Indicates possible overuse or underuse.")
|
269 |
else:
|
270 |
+
summary.append("No potential downtime risks detected. All devices are operating within expected patterns.")
|
271 |
else:
|
272 |
+
summary.append("Unable to detect downtime risks due to an error.")
|
273 |
summary.append("\n")
|
274 |
|
275 |
# Maintenance Alerts (AMC Expiries)
|
|
|
290 |
# Generated Reports
|
291 |
summary.append("## Generated Reports")
|
292 |
summary.append("- **Usage Chart**: Visualizes usage patterns across devices, helping identify overworked or underused equipment. See below for the chart.")
|
293 |
+
summary.append("- **PDF Report**: A comprehensive report including device logs, downtime insights, maintenance alerts, and a processing flowchart. Download it below.")
|
294 |
|
295 |
return "\n".join(summary)
|
296 |
|
|
|
303 |
("Upload CSV File(s)", "User uploads log files in CSV format."),
|
304 |
("Validate Data", "Checks for required columns (equipment, usage_count, status, amc_expiry) and correct data types."),
|
305 |
("Generate Usage Chart", "Creates a bar chart showing usage counts by device and status (e.g., Active, Inactive)."),
|
306 |
+
("Detect Downtime Risks", "Uses Local Outlier Factor to identify devices with unusual usage patterns (e.g., too high or too low)."),
|
307 |
("Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05."),
|
308 |
("Create PDF Report", "Generates a detailed PDF with data tables, insights, and this flowchart.")
|
309 |
]
|
|
|
316 |
def process_files(uploaded_files):
|
317 |
"""
|
318 |
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
319 |
+
Returns a dataframe, plot path, PDF path, AMC expiry message, summary, device cards HTML, and flowchart HTML.
|
320 |
"""
|
321 |
# Log received files
|
322 |
logging.info(f"Received uploaded files: {uploaded_files}")
|
323 |
|
324 |
if not uploaded_files:
|
325 |
logging.warning("No files uploaded.")
|
326 |
+
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo files uploaded.", "", ""
|
327 |
|
328 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
329 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
330 |
|
331 |
if not valid_files:
|
332 |
logging.warning("No valid CSV files uploaded.")
|
333 |
+
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo valid CSV files uploaded.", "", ""
|
334 |
|
335 |
logging.info("Loading logs from uploaded files...")
|
336 |
all_data = []
|
|
|
344 |
is_valid, error_msg = validate_csv(df)
|
345 |
if not is_valid:
|
346 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
347 |
+
return None, None, None, f"Error loading {file.name}: {error_msg}", f"## Summary\nError: {error_msg}", "", ""
|
348 |
all_data.append(df)
|
349 |
except Exception as e:
|
350 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
351 |
+
return None, None, None, f"Error loading {file.name}: {str(e)}", f"## Summary\nError: {str(e)}", "", ""
|
352 |
|
353 |
if not all_data:
|
354 |
logging.warning("No data loaded from uploaded files.")
|
355 |
+
return None, None, None, "No valid data found in uploaded files.", "## Summary\nNo data loaded.", "", ""
|
356 |
|
357 |
combined_df = pd.concat(all_data, ignore_index=True)
|
358 |
logging.info(f"Combined {len(combined_df)} total records.")
|
|
|
365 |
logging.info("Usage plot generated successfully.")
|
366 |
else:
|
367 |
logging.error("Failed to generate usage plot.")
|
368 |
+
return combined_df, None, None, "Failed to generate usage plot.", "## Summary\nUsage plot generation failed.", "", ""
|
369 |
|
370 |
# Detect anomalies using Local Outlier Factor
|
371 |
logging.info("Detecting anomalies using Local Outlier Factor...")
|
|
|
392 |
summary = generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path)
|
393 |
logging.info("Summary generated successfully.")
|
394 |
|
395 |
+
# Generate device cards
|
396 |
+
logging.info("Generating device cards HTML...")
|
397 |
+
device_cards_html = generate_device_cards(combined_df, anomaly_df)
|
398 |
+
logging.info("Device cards HTML generated successfully.")
|
399 |
+
|
400 |
# Generate flowchart HTML
|
401 |
logging.info("Generating flowchart HTML...")
|
402 |
flowchart_html = generate_flowchart_html()
|
|
|
407 |
if anomaly_df is not None:
|
408 |
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
|
409 |
|
410 |
+
return output_df, plot_path, pdf_path, amc_message, summary, device_cards_html, flowchart_html
|
411 |
|
412 |
def generate_usage_plot(df):
|
413 |
"""
|
|
|
417 |
try:
|
418 |
plt.figure(figsize=(12, 6))
|
419 |
# Define colors for statuses
|
420 |
+
status_colors = {'Active': '#3B82F6', 'Inactive': '#EF4444', 'Down': '#F59E0B', 'Online': '#10B981'}
|
421 |
for status in df['status'].unique():
|
422 |
subset = df[df['status'] == status]
|
423 |
plt.bar(
|
424 |
subset['equipment'] + f" ({status})",
|
425 |
subset['usage_count'],
|
426 |
label=status,
|
427 |
+
color=status_colors.get(status, '#6B7280')
|
428 |
)
|
429 |
plt.xlabel("Equipment (Status)", fontsize=12)
|
430 |
plt.ylabel("Usage Count", fontsize=12)
|
431 |
+
plt.title("Device Usage Overview", fontsize=14, color='#1E40AF')
|
432 |
plt.legend(title="Status")
|
433 |
plt.xticks(rotation=45, ha='right')
|
434 |
plt.tight_layout()
|
|
|
495 |
def draw_header():
|
496 |
c.setFont("Helvetica-Bold", 16)
|
497 |
c.setFillColor(colors.darkblue)
|
498 |
+
c.drawString(50, height - 50, "Multi-Device LabOps Dashboard Report")
|
499 |
c.setFont("Helvetica", 10)
|
500 |
c.setFillColor(colors.black)
|
501 |
c.drawString(50, height - 70, f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
|
|
520 |
c.drawString(50, y, f"Unique Devices: {', '.join(original_df['equipment'].unique())}")
|
521 |
y -= 40
|
522 |
|
523 |
+
# Device Log Details
|
524 |
y = draw_section_title("Device Log Details", y)
|
525 |
c.setFont("Helvetica-Bold", 10)
|
526 |
headers = ["Equipment", "Usage Count", "Status", "AMC Expiry", "Activity"]
|
|
|
547 |
draw_header()
|
548 |
c.setFont("Helvetica", 10)
|
549 |
|
550 |
+
# Downtime Insights
|
551 |
+
y = draw_section_title("Downtime Insights (Using Local Outlier Factor)", y)
|
552 |
c.setFont("Helvetica", 12)
|
553 |
if anomaly_df is not None:
|
554 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
555 |
+
c.drawString(50, y, f"Potential Downtime Risks Detected: {num_anomalies}")
|
556 |
y -= 20
|
557 |
if num_anomalies > 0:
|
558 |
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
|
|
570 |
draw_header()
|
571 |
c.setFont("Helvetica-Oblique", 10)
|
572 |
else:
|
573 |
+
c.drawString(50, y, "Unable to detect downtime risks due to an error.")
|
574 |
y -= 20
|
575 |
y -= 20
|
576 |
|
|
|
621 |
("1. Upload CSV File(s)", "User uploads log files in CSV format containing device usage data."),
|
622 |
("2. Validate Data", "Ensures all required columns (equipment, usage_count, status, amc_expiry) are present and data types are correct (e.g., usage_count as numeric, amc_expiry as date)."),
|
623 |
("3. Generate Usage Chart", "Creates a bar chart showing usage counts by device and status (e.g., Active, Inactive) to visualize usage patterns."),
|
624 |
+
("4. Detect Downtime Risks", "Uses Local Outlier Factor (LOF) algorithm to identify devices with unusual usage patterns by comparing local density of usage counts (contamination=0.1, n_neighbors=5)."),
|
625 |
("5. Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05, calculating days left and urgency (urgent if ≤3 days)."),
|
626 |
+
("6. Create PDF Report", "Generates this PDF with a data table, downtime insights, maintenance alerts, and this detailed flowchart.")
|
627 |
]
|
628 |
for step, description in flowchart:
|
629 |
c.drawString(50, y, step)
|
|
|
647 |
|
648 |
# Gradio interface
|
649 |
with gr.Blocks(css=css) as demo:
|
650 |
+
gr.Markdown("# Multi-Device LabOps Dashboard")
|
|
|
|
|
|
|
651 |
with gr.Row():
|
652 |
+
file_input = gr.File(file_count="multiple", label="Upload Device Logs (CSV)")
|
653 |
+
process_button = gr.Button("Process Logs")
|
654 |
with gr.Row():
|
655 |
+
output_summary = gr.Markdown(label="Dashboard Summary", elem_classes=["card"])
|
656 |
+
with gr.Row(elem_classes=["dashboard-container"]):
|
657 |
+
output_device_cards = gr.HTML(label="Device Overview")
|
658 |
+
with gr.Row(elem_classes=["dashboard-container"]):
|
659 |
+
with gr.Column():
|
660 |
+
output_plot = gr.Image(label="Usage Chart", elem_classes=["card", "chart-container"])
|
661 |
+
with gr.Column():
|
662 |
+
output_message = gr.Textbox(label="Maintenance Alerts", elem_classes=["card", "alert-card"])
|
663 |
+
with gr.Row(elem_classes=["dashboard-container"]):
|
664 |
+
output_df = gr.Dataframe(label="Device Logs", elem_classes=["card", "dataframe-container"])
|
665 |
+
with gr.Row(elem_classes=["dashboard-container"]):
|
666 |
+
output_flowchart = gr.HTML(label="Processing Flowchart", elem_classes=["card", "flowchart-container"])
|
667 |
+
with gr.Row(elem_classes=["dashboard-container"]):
|
668 |
+
with gr.Column():
|
669 |
+
output_pdf = gr.File(label="Download Detailed Report", elem_classes=["card"])
|
670 |
process_button.click(
|
671 |
fn=process_files,
|
672 |
inputs=[file_input],
|
673 |
+
outputs=[output_df, output_plot, output_pdf, output_message, output_summary, output_device_cards, output_flowchart]
|
674 |
)
|
675 |
|
676 |
if __name__ == "__main__":
|