import gradio as gr import pandas as pd import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest from datetime import datetime, timedelta import os import logging from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas import tempfile # Configure logging to match the log format logging.basicConfig(level=logging.INFO, format='%(asctime)s,%(msecs)03d - %(levelname)s - %(message)s') def validate_csv(df): """ Validate that the CSV has the required columns. Returns True if valid, False otherwise with an error message. """ required_columns = ['equipment', 'usage_count', 'status', 'amc_expiry'] missing_columns = [col for col in required_columns if col not in df.columns] if missing_columns: return False, f"Missing required columns: {', '.join(missing_columns)}" # Validate data types try: df['usage_count'] = pd.to_numeric(df['usage_count'], errors='raise') df['amc_expiry'] = pd.to_datetime(df['amc_expiry'], errors='raise') except Exception as e: return False, f"Invalid data types: {str(e)}" return True, "" def process_files(uploaded_files): """ Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries. Returns a dataframe, plot path, PDF path, and AMC expiry message. """ # Log received files logging.info(f"Received uploaded files: {uploaded_files}") if not uploaded_files: logging.warning("No files uploaded.") return None, None, None, "Please upload at least one valid CSV file." valid_files = [f for f in uploaded_files if f.name.endswith('.csv')] logging.info(f"Processing {len(valid_files)} valid files: {valid_files}") if not valid_files: logging.warning("No valid CSV files uploaded.") return None, None, None, "Please upload at least one valid CSV file." logging.info("Loading logs from uploaded files...") all_data = [] # Load and combine CSV files for file in valid_files: try: df = pd.read_csv(file.name) logging.info(f"Loaded {len(df)} records from {file.name}") # Validate CSV structure is_valid, error_msg = validate_csv(df) if not is_valid: logging.error(f"Failed to load {file.name}: {error_msg}") return None, None, None, f"Error loading {file.name}: {error_msg}" all_data.append(df) except Exception as e: logging.error(f"Failed to load {file.name}: {str(e)}") return None, None, None, f"Error loading {file.name}: {str(e)}" if not all_data: logging.warning("No data loaded from uploaded files.") return None, None, None, "No valid data found in uploaded files." combined_df = pd.concat(all_data, ignore_index=True) logging.info(f"Combined {len(combined_df)} total records.") logging.info(f"Loaded {len(combined_df)} log records from uploaded files.") # Generate usage plot logging.info("Generating usage plot...") plot_path = generate_usage_plot(combined_df) if plot_path: logging.info("Usage plot generated successfully.") else: logging.error("Failed to generate usage plot.") return combined_df, None, None, "Failed to generate usage plot." # Detect anomalies logging.info("Detecting anomalies...") anomaly_df = detect_anomalies(combined_df) if anomaly_df is None: logging.error("Failed to detect anomalies.") else: logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies.") # Process AMC expiries logging.info("Processing AMC expiries...") amc_message, amc_df = process_amc_expiries(combined_df) # Generate PDF report pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df) # Prepare output dataframe (combine original data with anomalies) output_df = combined_df.copy() if anomaly_df is not None: output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Anomaly"}) return output_df, plot_path, pdf_path, amc_message def generate_usage_plot(df): """ Generate a bar plot of usage_count by equipment and status. Returns the path to the saved plot. """ try: plt.figure(figsize=(12, 6)) # Define colors for statuses status_colors = {'Active': '#36A2EB', 'Inactive': '#FF6384', 'Down': '#FFCE56', 'Online': '#4BC0C0'} for status in df['status'].unique(): subset = df[df['status'] == status] plt.bar( subset['equipment'] + f" ({status})", subset['usage_count'], label=status, color=status_colors.get(status, '#999999') ) plt.xlabel("Equipment (Status)", fontsize=12) plt.ylabel("Usage Count", fontsize=12) plt.title("Usage Count by Equipment and Status", fontsize=14) plt.legend(title="Status") plt.xticks(rotation=45, ha='right') plt.tight_layout() # Save plot to temporary file with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp: plt.savefig(tmp.name, format='png', dpi=100) plot_path = tmp.name plt.close() return plot_path except Exception as e: logging.error(f"Failed to generate usage plot: {str(e)}") return None def detect_anomalies(df): """ Detect anomalies in usage_count using Isolation Forest. Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal). """ try: model = IsolationForest(contamination=0.1, random_state=42) anomalies = model.fit_predict(df[['usage_count']].values) anomaly_df = df.copy() anomaly_df['anomaly'] = anomalies return anomaly_df except Exception as e: logging.error(f"Failed to detect anomalies: {str(e)}") return None def process_amc_expiries(df): """ Identify devices with AMC expiries within 7 days from 2025-06-05. Returns a message and a dataframe of devices with upcoming expiries. """ try: current_date = datetime(2025, 6, 5) threshold = current_date + timedelta(days=7) df['amc_expiry'] = pd.to_datetime(df['amc_expiry']) upcoming_expiries = df[df['amc_expiry'] <= threshold] unique_devices = upcoming_expiries['equipment'].unique() message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}." logging.info(f"Found {len(unique_devices)} devices with upcoming AMC expiries.") return message, upcoming_expiries except Exception as e: logging.error(f"Failed to process AMC expiries: {str(e)}") return f"Error processing AMC expiries: {str(e)}", None def generate_pdf_report(original_df, anomaly_df, amc_df): """ Generate a PDF report with data summary, anomalies, and AMC expiries. Returns the path to the saved PDF. """ try: if original_df is None or original_df.empty: logging.warning("No data available for PDF generation.") return None with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp: c = canvas.Canvas(tmp.name, pagesize=letter) c.setFont("Helvetica-Bold", 16) c.drawString(100, 750, "Equipment Log Analysis Report") c.setFont("Helvetica", 12) y = 720 # Summary c.drawString(100, y, "Summary") y -= 20 c.drawString(100, y, f"Total Records: {len(original_df)}") y -= 20 c.drawString(100, y, f"Devices: {', '.join(original_df['equipment'].unique())}") y -= 40 # Anomalies c.drawString(100, y, "Anomaly Detection Results") y -= 20 if anomaly_df is not None: num_anomalies = sum(anomaly_df['anomaly'] == -1) c.drawString(100, y, f"Anomalies Detected: {num_anomalies}") y -= 20 if num_anomalies > 0: anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count']] c.drawString(100, y, "Anomalous Records:") y -= 20 for _, row in anomaly_records.iterrows(): c.drawString(100, y, f"{row['equipment']}: Usage Count = {row['usage_count']}") y -= 20 if y < 50: c.showPage() y = 750 else: c.drawString(100, y, "Anomaly detection failed.") y -= 20 y -= 20 # AMC Expiries c.drawString(100, y, "AMC Expiries Within 7 Days") y -= 20 if amc_df is not None and not amc_df.empty: c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}") y -= 20 for _, row in amc_df.iterrows(): c.drawString(100, y, f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}") y -= 20 if y < 50: c.showPage() y = 750 else: c.drawString(100, y, "No AMC expiry data available.") y -= 20 c.showPage() c.save() return tmp.name except Exception as e: logging.error(f"Failed to generate PDF report: {str(e)}") return None # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Equipment Log Analysis") with gr.Row(): file_input = gr.File(file_count="multiple", label="Upload CSV Files") process_button = gr.Button("Process Files") with gr.Row(): output_df = gr.Dataframe(label="Processed Data") output_plot = gr.Image(label="Usage Plot") with gr.Row(): output_message = gr.Textbox(label="AMC Expiry Status") output_pdf = gr.File(label="Download PDF Report") process_button.click( fn=process_files, inputs=[file_input], outputs=[output_df, output_plot, output_pdf, output_message] ) if __name__ == "__main__": logging.info("Application starting...") demo.launch(server_name="0.0.0.0", server_port=7860)