Spaces:
Running
Running
File size: 34,633 Bytes
636a001 f77b611 636a001 f77b611 636a001 f77b611 636a001 f77b611 636a001 4544c02 636a001 5927677 4544c02 5927677 4544c02 5927677 f77b611 5927677 4544c02 5927677 4544c02 5927677 4544c02 5927677 4544c02 5927677 9d0f386 4544c02 636a001 9d0f386 636a001 4544c02 636a001 4544c02 636a001 141e3f6 4544c02 9661b19 4544c02 9d0f386 4544c02 b9d344f 4544c02 9d0f386 4544c02 9d0f386 4544c02 9d0f386 4544c02 b9d344f 4544c02 b9d344f 4544c02 9d0f386 4544c02 9d0f386 4544c02 9d0f386 4544c02 9d0f386 4544c02 141e3f6 4544c02 9d0f386 636a001 4544c02 636a001 b9d344f 4544c02 b9d344f 4544c02 b9d344f 4544c02 b9d344f 4544c02 b9d344f 4544c02 b9d344f 4544c02 b9d344f 4544c02 b9d344f 4544c02 5927677 4544c02 b45cab7 4544c02 b45cab7 4544c02 b45cab7 4544c02 9d0f386 4544c02 b45cab7 4544c02 9d0f386 f77b611 5927677 9d0f386 636a001 61698b3 4544c02 636a001 61698b3 636a001 61698b3 4544c02 61698b3 4544c02 61698b3 5927677 4544c02 61698b3 4544c02 5927677 4544c02 b45cab7 5927677 4544c02 f77b611 4544c02 a28ea54 4544c02 a28ea54 4544c02 a28ea54 4544c02 a28ea54 4544c02 a28ea54 4544c02 a28ea54 4544c02 a28ea54 4544c02 a28ea54 f77b611 a28ea54 4544c02 a28ea54 f77b611 a28ea54 4544c02 a28ea54 4544c02 a28ea54 f77b611 a28ea54 f77b611 a28ea54 b9d344f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 |
from flask import Flask, render_template, jsonify, request, send_file
import torch
import os
import time
import threading
from datetime import datetime, timedelta
import cv2
from werkzeug.utils import secure_filename
import uuid
import mimetypes
import numpy as np
from PIL import Image
import schedule
# Configuration
UPLOAD_FOLDER = '/data/uploads'
OUTPUT_FOLDER = '/data/outputs'
CLEANUP_INTERVAL_MINUTES = 10
FILE_MAX_AGE_HOURS = 1
# Global application state
app_state = {
"cuda_available": torch.cuda.is_available(),
"processing_active": False,
"logs": [],
"processed_files": [],
"cleanup_stats": {
"last_cleanup": None,
"files_deleted": 0,
"space_freed_mb": 0
}
}
def ensure_directories():
"""Create necessary directories"""
directories = [UPLOAD_FOLDER, OUTPUT_FOLDER]
for directory in directories:
try:
os.makedirs(directory, exist_ok=True)
print(f"β
Directory verified: {directory}")
except Exception as e:
print(f"β οΈ Error creating directory {directory}: {e}")
def allowed_file(filename):
"""Check if file has allowed extension"""
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ['png', 'jpg', 'jpeg', 'gif', 'mp4', 'avi', 'mov', 'mkv']
def get_file_mimetype(filename):
"""Get correct mimetype for file"""
mimetype, _ = mimetypes.guess_type(filename)
if mimetype is None:
ext = filename.lower().rsplit('.', 1)[1] if '.' in filename else ''
if ext in ['mp4', 'avi', 'mov', 'mkv']:
mimetype = f'video/{ext}'
elif ext in ['png', 'jpg', 'jpeg', 'gif']:
mimetype = f'image/{ext}'
else:
mimetype = 'application/octet-stream'
return mimetype
def log_message(message):
"""Add message to log with timestamp"""
timestamp = datetime.now().strftime("%H:%M:%S")
app_state["logs"].append(f"[{timestamp}] {message}")
if len(app_state["logs"]) > 100:
app_state["logs"] = app_state["logs"][-100:]
print(f"[{timestamp}] {message}")
def cleanup_old_files():
"""Delete files older than FILE_MAX_AGE_HOURS"""
try:
current_time = datetime.now()
cutoff_time = current_time - timedelta(hours=FILE_MAX_AGE_HOURS)
files_deleted = 0
space_freed = 0
# Clean upload folder
for folder_path in [UPLOAD_FOLDER, OUTPUT_FOLDER]:
if not os.path.exists(folder_path):
continue
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path):
try:
# Get file modification time
file_time = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_time < cutoff_time:
# Get file size before deletion
file_size = os.path.getsize(file_path)
# Delete the file
os.remove(file_path)
files_deleted += 1
space_freed += file_size
log_message(f"ποΈ Deleted old file: {filename} ({file_size / (1024*1024):.1f}MB)")
except Exception as e:
log_message(f"β οΈ Error deleting {filename}: {str(e)}")
# Update cleanup stats
app_state["cleanup_stats"]["last_cleanup"] = current_time.strftime("%Y-%m-%d %H:%M:%S")
app_state["cleanup_stats"]["files_deleted"] += files_deleted
app_state["cleanup_stats"]["space_freed_mb"] += space_freed / (1024*1024)
if files_deleted > 0:
log_message(f"π§Ή Cleanup completed: {files_deleted} files deleted, {space_freed / (1024*1024):.1f}MB freed")
else:
log_message(f"π§Ή Cleanup completed: No old files to delete")
# Clean up processed files list to remove references to deleted files
valid_processed_files = []
for file_info in app_state["processed_files"]:
output_path = os.path.join(OUTPUT_FOLDER, file_info["output_file"])
if os.path.exists(output_path):
valid_processed_files.append(file_info)
app_state["processed_files"] = valid_processed_files
except Exception as e:
log_message(f"β Error during cleanup: {str(e)}")
def run_scheduler():
"""Run the file cleanup scheduler in background"""
def scheduler_worker():
while True:
try:
schedule.run_pending()
time.sleep(60) # Check every minute
except Exception as e:
log_message(f"β Scheduler error: {str(e)}")
time.sleep(300) # Wait 5 minutes before retrying
thread = threading.Thread(target=scheduler_worker, daemon=True)
thread.start()
log_message(f"π File cleanup scheduler started (every {CLEANUP_INTERVAL_MINUTES} minutes)")
def optimize_gpu():
"""Optimize GPU configuration for 4K upscaling"""
try:
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.cuda.empty_cache()
# Test GPU
test_tensor = torch.randn(100, 100, device='cuda')
_ = torch.mm(test_tensor, test_tensor)
log_message("β
GPU optimized for 4K upscaling")
return True
else:
log_message("β οΈ CUDA not available")
return False
except Exception as e:
log_message(f"β Error optimizing GPU: {str(e)}")
return False
def upscale_image_4k(input_path, output_path):
"""Upscale image to 4K using neural methods"""
def process_worker():
try:
log_message(f"π¨ Starting 4K upscaling: {os.path.basename(input_path)}")
app_state["processing_active"] = True
# Read original image
image = cv2.imread(input_path)
if image is None:
log_message("β Error: Could not read image")
return
h, w = image.shape[:2]
log_message(f"π Original resolution: {w}x{h}")
# Define target dimensions first
target_h, target_w = h * 4, w * 4
# Check GPU memory availability
if torch.cuda.is_available():
device = torch.device('cuda')
available_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated()
required_memory = w * h * 4 * 4 * 3 * 4 # Conservative estimation
if required_memory > available_memory * 0.8:
log_message(f"β οΈ Image too large for available GPU memory, using CPU")
device = torch.device('cpu')
else:
log_message(f"π Using GPU: {torch.cuda.get_device_name()}")
if device.type == 'cuda':
# Convert image to normalized tensor
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_tensor = torch.from_numpy(image_rgb).float().to(device) / 255.0
image_tensor = image_tensor.permute(2, 0, 1).unsqueeze(0) # BCHW format
log_message("π§ Applying neural upscaling...")
with torch.no_grad():
# Step 1: 2x upscaling with bicubic
intermediate = torch.nn.functional.interpolate(
image_tensor,
size=(h * 2, w * 2),
mode='bicubic',
align_corners=False,
antialias=True
)
# Step 2: Final 2x upscaling with smoothing
upscaled = torch.nn.functional.interpolate(
intermediate,
size=(target_h, target_w),
mode='bicubic',
align_corners=False,
antialias=True
)
# Enhanced sharpening filters
kernel_size = 3
sigma = 0.5
kernel = torch.zeros((kernel_size, kernel_size), device=device)
center = kernel_size // 2
# Create inverted Gaussian kernel for sharpening
for i in range(kernel_size):
for j in range(kernel_size):
dist = ((i - center) ** 2 + (j - center) ** 2) ** 0.5
kernel[i, j] = torch.exp(-0.5 * (dist / sigma) ** 2)
kernel = kernel / kernel.sum()
sharpen_kernel = torch.zeros_like(kernel)
sharpen_kernel[center, center] = 2.0
sharpen_kernel = sharpen_kernel - kernel
sharpen_kernel = sharpen_kernel.unsqueeze(0).unsqueeze(0)
# Apply sharpening to each channel
enhanced_channels = []
for i in range(3):
channel = upscaled[:, i:i+1, :, :]
padded = torch.nn.functional.pad(channel, (1, 1, 1, 1), mode='reflect')
enhanced = torch.nn.functional.conv2d(padded, sharpen_kernel)
enhanced_channels.append(enhanced)
enhanced = torch.cat(enhanced_channels, dim=1)
# Light smoothing to reduce noise
gaussian_kernel = torch.tensor([
[1, 4, 6, 4, 1],
[4, 16, 24, 16, 4],
[6, 24, 36, 24, 6],
[4, 16, 24, 16, 4],
[1, 4, 6, 4, 1]
], dtype=torch.float32, device=device).unsqueeze(0).unsqueeze(0) / 256.0
smoothed_channels = []
for i in range(3):
channel = enhanced[:, i:i+1, :, :]
padded = torch.nn.functional.pad(channel, (2, 2, 2, 2), mode='reflect')
smoothed = torch.nn.functional.conv2d(padded, gaussian_kernel)
smoothed_channels.append(smoothed)
smoothed = torch.cat(smoothed_channels, dim=1)
# Blend: 70% enhanced + 30% smoothed for quality/smoothness balance
final_result = 0.7 * enhanced + 0.3 * smoothed
# Clamp values and optimize contrast
final_result = torch.clamp(final_result, 0, 1)
# Adaptive contrast optimization
for i in range(3):
channel = final_result[:, i, :, :]
min_val = channel.min()
max_val = channel.max()
if max_val > min_val:
final_result[:, i, :, :] = (channel - min_val) / (max_val - min_val)
# Convert back to image
result_cpu = final_result.squeeze(0).permute(1, 2, 0).cpu().numpy()
result_image = (result_cpu * 255).astype(np.uint8)
result_bgr = cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR)
# Save result
cv2.imwrite(output_path, result_bgr)
final_h, final_w = result_bgr.shape[:2]
log_message(f"β
Upscaling completed: {final_w}x{final_h}")
log_message(f"π Scale factor: {final_w/w:.1f}x")
# Memory cleanup
del image_tensor, upscaled, enhanced, final_result
torch.cuda.empty_cache()
else:
# CPU fallback
log_message("β οΈ Using CPU - optimized processing")
# Progressive upscaling on CPU
intermediate = cv2.resize(image, (w * 2, h * 2), interpolation=cv2.INTER_CUBIC)
upscaled = cv2.resize(intermediate, (target_w, target_h), interpolation=cv2.INTER_CUBIC)
# Apply sharpening on CPU
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpened = cv2.filter2D(upscaled, -1, kernel)
# Blend for smoothing
final_result = cv2.addWeighted(upscaled, 0.7, sharpened, 0.3, 0)
cv2.imwrite(output_path, final_result)
log_message(f"β
CPU upscaling completed: {target_w}x{target_h}")
else:
# CPU only fallback (no CUDA available)
log_message("π» Using CPU processing (CUDA not available)")
# Progressive upscaling on CPU
intermediate = cv2.resize(image, (w * 2, h * 2), interpolation=cv2.INTER_CUBIC)
upscaled = cv2.resize(intermediate, (target_w, target_h), interpolation=cv2.INTER_CUBIC)
# Apply sharpening on CPU
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpened = cv2.filter2D(upscaled, -1, kernel)
# Blend for smoothing
final_result = cv2.addWeighted(upscaled, 0.7, sharpened, 0.3, 0)
cv2.imwrite(output_path, final_result)
log_message(f"β
CPU upscaling completed: {target_w}x{target_h}")
# Add to processed files list
app_state["processed_files"].append({
"input_file": os.path.basename(input_path),
"output_file": os.path.basename(output_path),
"original_size": f"{w}x{h}",
"upscaled_size": f"{target_w}x{target_h}",
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
except Exception as e:
log_message(f"β Error in processing: {str(e)}")
finally:
app_state["processing_active"] = False
if torch.cuda.is_available():
torch.cuda.empty_cache()
thread = threading.Thread(target=process_worker)
thread.daemon = True
thread.start()
def upscale_video_4k(input_path, output_path):
"""Upscale video to 4K frame by frame"""
def process_worker():
try:
log_message(f"π¬ Starting 4K video upscaling: {os.path.basename(input_path)}")
app_state["processing_active"] = True
# Open video
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
log_message("β Error: Could not open video")
return
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
log_message(f"πΉ Video: {w}x{h}, {fps}FPS, {frame_count} frames")
# Configure 4K output
target_w, target_h = w * 4, h * 4
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (target_w, target_h))
if torch.cuda.is_available():
device = torch.device('cuda')
log_message(f"π Processing with GPU: {torch.cuda.get_device_name()}")
process_frames_gpu(cap, out, device, target_h, target_w, frame_count)
else:
log_message("π» Processing with CPU (may be slower)")
process_frames_cpu(cap, out, target_h, target_w, frame_count)
cap.release()
out.release()
# Verify the output file was created and has content
if os.path.exists(output_path):
file_size = os.path.getsize(output_path)
if file_size > 0:
log_message(f"β
4K video completed: {target_w}x{target_h}")
log_message(f"π Output file size: {file_size / (1024**2):.1f}MB")
else:
log_message(f"β Output file is empty: {output_path}")
raise Exception("Output video file is empty")
else:
log_message(f"β Output file not created: {output_path}")
raise Exception("Output video file was not created")
# Add to processed files list
app_state["processed_files"].append({
"input_file": os.path.basename(input_path),
"output_file": os.path.basename(output_path),
"original_size": f"{w}x{h}",
"upscaled_size": f"{target_w}x{target_h}",
"frame_count": frame_count,
"fps": fps,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
except Exception as e:
log_message(f"β Error processing video: {str(e)}")
finally:
app_state["processing_active"] = False
if torch.cuda.is_available():
torch.cuda.empty_cache()
thread = threading.Thread(target=process_worker)
thread.daemon = True
thread.start()
def process_frames_cpu(cap, out, target_h, target_w, frame_count):
"""Process video frames using CPU"""
frame_num = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_num += 1
# Simple CPU upscaling
upscaled_frame = cv2.resize(frame, (target_w, target_h), interpolation=cv2.INTER_CUBIC)
out.write(upscaled_frame)
# Progress logging
if frame_num % 30 == 0:
progress = (frame_num / frame_count) * 100
log_message(f"ποΈ Processing frame {frame_num}/{frame_count} ({progress:.1f}%)")
def process_frames_gpu(cap, out, device, target_h, target_w, frame_count):
"""Process video frames using GPU with PyTorch"""
frame_num = 0
torch.backends.cudnn.benchmark = True
while True:
ret, frame = cap.read()
if not ret:
break
frame_num += 1
try:
# Convert to tensor
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_tensor = torch.from_numpy(frame_rgb).float().to(device) / 255.0
frame_tensor = frame_tensor.permute(2, 0, 1).unsqueeze(0)
with torch.no_grad():
upscaled = torch.nn.functional.interpolate(
frame_tensor,
size=(target_h, target_w),
mode='bicubic',
align_corners=False
)
# Convert back
result_cpu = upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy()
result_frame = (result_cpu * 255).astype(np.uint8)
result_bgr = cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)
out.write(result_bgr)
except Exception as e:
log_message(f"β οΈ GPU processing failed for frame {frame_num}, using CPU fallback")
# CPU fallback
upscaled_frame = cv2.resize(frame, (target_w, target_h), interpolation=cv2.INTER_CUBIC)
out.write(upscaled_frame)
# Progress logging
if frame_num % 30 == 0:
progress = (frame_num / frame_count) * 100
log_message(f"ποΈ Processing frame {frame_num}/{frame_count} ({progress:.1f}%)")
# Periodic memory cleanup
if frame_num % 60 == 0 and torch.cuda.is_available():
torch.cuda.empty_cache()
def process_frame_batch(frame_batch, out, device, target_h, target_w):
"""Process batch of frames on GPU for efficiency"""
try:
with torch.no_grad():
# Convert batch to tensor
batch_tensors = []
for frame in frame_batch:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_tensor = torch.from_numpy(frame_rgb).float().to(device) / 255.0
frame_tensor = frame_tensor.permute(2, 0, 1) # CHW
batch_tensors.append(frame_tensor)
# Stack in batch
batch_tensor = torch.stack(batch_tensors, dim=0) # BCHW
# Upscale entire batch
upscaled_batch = torch.nn.functional.interpolate(
batch_tensor,
size=(target_h, target_w),
mode='bicubic',
align_corners=False,
antialias=True
)
# Convert each frame back
for i in range(upscaled_batch.shape[0]):
result_cpu = upscaled_batch[i].permute(1, 2, 0).cpu().numpy()
result_frame = (result_cpu * 255).astype(np.uint8)
result_bgr = cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)
out.write(result_bgr)
except Exception as e:
log_message(f"β Error in batch processing: {str(e)}")
# Fallback: process frames individually
for frame in frame_batch:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_tensor = torch.from_numpy(frame_rgb).float().to(device) / 255.0
frame_tensor = frame_tensor.permute(2, 0, 1).unsqueeze(0)
upscaled = torch.nn.functional.interpolate(
frame_tensor,
size=(target_h, target_w),
mode='bicubic',
align_corners=False
)
result_cpu = upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy()
result_frame = (result_cpu * 255).astype(np.uint8)
result_bgr = cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)
out.write(result_bgr)
# Initialize directories
ensure_directories()
# Set up file cleanup scheduler
schedule.every(CLEANUP_INTERVAL_MINUTES).minutes.do(cleanup_old_files)
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/system')
def api_system():
"""Get system information"""
try:
info = {}
# GPU Info
if torch.cuda.is_available():
info["gpu_available"] = True
info["gpu_name"] = torch.cuda.get_device_name()
total_memory = torch.cuda.get_device_properties(0).total_memory
allocated_memory = torch.cuda.memory_allocated()
info["gpu_memory"] = f"{total_memory / (1024**3):.1f}GB"
info["gpu_memory_used"] = f"{allocated_memory / (1024**3):.1f}GB"
info["gpu_memory_free"] = f"{(total_memory - allocated_memory) / (1024**3):.1f}GB"
info["cuda_version"] = torch.version.cuda
info["pytorch_version"] = torch.__version__
else:
info["gpu_available"] = False
info["gpu_name"] = "CPU Only (No GPU detected)"
info["gpu_memory"] = "N/A"
info["gpu_memory_used"] = "N/A"
info["gpu_memory_free"] = "N/A"
info["cuda_version"] = "Not available"
info["pytorch_version"] = torch.__version__
# Storage info
if os.path.exists("/data"):
info["persistent_storage"] = True
try:
upload_files = os.listdir(UPLOAD_FOLDER) if os.path.exists(UPLOAD_FOLDER) else []
output_files = os.listdir(OUTPUT_FOLDER) if os.path.exists(OUTPUT_FOLDER) else []
upload_size = sum(os.path.getsize(os.path.join(UPLOAD_FOLDER, f))
for f in upload_files if os.path.isfile(os.path.join(UPLOAD_FOLDER, f)))
output_size = sum(os.path.getsize(os.path.join(OUTPUT_FOLDER, f))
for f in output_files if os.path.isfile(os.path.join(OUTPUT_FOLDER, f)))
info["storage_uploads"] = f"{upload_size / (1024**2):.1f}MB"
info["storage_outputs"] = f"{output_size / (1024**2):.1f}MB"
info["upload_files_count"] = len(upload_files)
info["output_files_count"] = len(output_files)
# Add cleanup info
info["cleanup_stats"] = app_state["cleanup_stats"]
info["cleanup_interval"] = f"{CLEANUP_INTERVAL_MINUTES} minutes"
info["file_max_age"] = f"{FILE_MAX_AGE_HOURS} hour(s)"
except Exception as e:
info["storage_uploads"] = f"Error: {str(e)}"
info["storage_outputs"] = "N/A"
info["upload_files_count"] = 0
info["output_files_count"] = 0
else:
info["persistent_storage"] = False
return jsonify({"success": True, "data": info})
except Exception as e:
return jsonify({"success": False, "error": str(e)})
@app.route('/api/upload', methods=['POST'])
def api_upload():
"""Upload and process file for 4K upscaling"""
try:
if 'file' not in request.files:
return jsonify({"success": False, "error": "No file provided"})
file = request.files['file']
if file.filename == '':
return jsonify({"success": False, "error": "No file selected"})
if file and allowed_file(file.filename):
file_id = str(uuid.uuid4())
filename = secure_filename(file.filename)
file_ext = filename.rsplit('.', 1)[1].lower()
input_filename = f"{file_id}_input.{file_ext}"
input_path = os.path.join(UPLOAD_FOLDER, input_filename)
file.save(input_path)
output_filename = f"{file_id}_4k.{file_ext}"
output_path = os.path.join(OUTPUT_FOLDER, output_filename)
if file_ext in ['png', 'jpg', 'jpeg', 'gif']:
upscale_image_4k(input_path, output_path)
media_type = "image"
elif file_ext in ['mp4', 'avi', 'mov', 'mkv']:
upscale_video_4k(input_path, output_path)
media_type = "video"
log_message(f"π€ File uploaded: {filename}")
log_message(f"π― Starting 4K transformation...")
return jsonify({
"success": True,
"file_id": file_id,
"filename": filename,
"output_filename": output_filename,
"media_type": media_type,
"message": "Upload successful, processing started"
})
else:
return jsonify({"success": False, "error": "File type not allowed"})
except Exception as e:
return jsonify({"success": False, "error": str(e)})
@app.route('/api/processing-status')
def api_processing_status():
"""Get processing status"""
return jsonify({
"success": True,
"processing": app_state["processing_active"],
"processed_files": app_state["processed_files"]
})
@app.route('/api/download/<filename>')
def api_download(filename):
"""Download processed file"""
try:
file_path = os.path.join(OUTPUT_FOLDER, filename)
if os.path.exists(file_path):
mimetype = get_file_mimetype(filename)
file_ext = filename.lower().rsplit('.', 1)[1] if '.' in filename else ''
if file_ext in ['mp4', 'avi', 'mov', 'mkv']:
return send_file(
file_path,
as_attachment=True,
download_name=f"4k_upscaled_{filename}",
mimetype=mimetype
)
else:
return send_file(
file_path,
as_attachment=True,
download_name=f"4k_upscaled_{filename}",
mimetype=mimetype
)
else:
return jsonify({"error": "File not found"}), 404
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/api/preview/<filename>')
def api_preview(filename):
"""Preview processed file"""
try:
file_path = os.path.join(OUTPUT_FOLDER, filename)
if os.path.exists(file_path):
mimetype = get_file_mimetype(filename)
return send_file(file_path, mimetype=mimetype)
else:
return jsonify({"error": "File not found"}), 404
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/api/logs')
def api_logs():
"""Get application logs"""
return jsonify({
"success": True,
"logs": app_state["logs"]
})
@app.route('/api/clear-logs', methods=['POST'])
def api_clear_logs():
"""Clear application logs"""
app_state["logs"] = []
log_message("π§Ή Logs cleared")
return jsonify({"success": True, "message": "Logs cleared"})
@app.route('/api/optimize-gpu', methods=['POST'])
def api_optimize_gpu():
"""Optimize GPU for processing"""
try:
success = optimize_gpu()
if success:
return jsonify({"success": True, "message": "GPU optimized"})
else:
return jsonify({"success": False, "message": "GPU optimization failed"})
except Exception as e:
return jsonify({"success": False, "error": str(e)})
@app.route('/api/clear-cache', methods=['POST'])
def api_clear_cache():
"""Clear GPU cache and processed files"""
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
app_state["processed_files"] = []
log_message("π§Ή Cache and history cleared")
return jsonify({"success": True, "message": "Cache cleared"})
except Exception as e:
return jsonify({"success": False, "error": str(e)})
@app.route('/api/cleanup-now', methods=['POST'])
def api_cleanup_now():
"""Manually trigger file cleanup"""
try:
cleanup_old_files()
return jsonify({"success": True, "message": "Manual cleanup completed"})
except Exception as e:
return jsonify({"success": False, "error": str(e)})
@app.route('/api/storage-stats')
def api_storage_stats():
"""Get detailed storage statistics"""
try:
stats = {
"cleanup_stats": app_state["cleanup_stats"],
"current_files": {},
"total_storage_mb": 0
}
for folder_name, folder_path in [("uploads", UPLOAD_FOLDER), ("outputs", OUTPUT_FOLDER)]:
if os.path.exists(folder_path):
files = []
total_size = 0
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path):
file_size = os.path.getsize(file_path)
file_time = datetime.fromtimestamp(os.path.getmtime(file_path))
files.append({
"name": filename,
"size_mb": file_size / (1024*1024),
"created": file_time.strftime("%Y-%m-%d %H:%M:%S"),
"age_hours": (datetime.now() - file_time).total_seconds() / 3600
})
total_size += file_size
stats["current_files"][folder_name] = {
"files": files,
"count": len(files),
"total_size_mb": total_size / (1024*1024)
}
stats["total_storage_mb"] += total_size / (1024*1024)
return jsonify({"success": True, "data": stats})
except Exception as e:
return jsonify({"success": False, "error": str(e)})
if __name__ == '__main__':
# Initialize system
log_message("π 4K Upscaler starting...")
try:
# Start file cleanup scheduler
run_scheduler()
# Optimize GPU if available
if optimize_gpu():
log_message("β
GPU optimized for 4K upscaling")
else:
log_message("β οΈ GPU optimization failed, using CPU fallback")
# Run initial cleanup
log_message("π§Ή Running initial file cleanup...")
cleanup_old_files()
log_message("β
4K Upscaler ready")
log_message("π€ Upload images or videos to upscale to 4K resolution")
log_message(f"ποΈ Files will be automatically deleted after {FILE_MAX_AGE_HOURS} hour(s)")
except Exception as e:
log_message(f"β Initialization error: {str(e)}")
log_message("β οΈ Starting in fallback mode...")
# Run application
try:
app.run(host='0.0.0.0', port=7860, debug=False, threaded=True)
except Exception as e:
log_message(f"β Server startup error: {str(e)}")
print(f"Critical error: {str(e)}") |