Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py — PromptCraft: Refinamiento Estructural de Prompts
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
import time
|
|
@@ -18,6 +18,7 @@ class LlamaRefiner:
|
|
| 18 |
hf_token = os.getenv("PS")
|
| 19 |
if not hf_token:
|
| 20 |
raise ValueError("Secret 'PS' (HF_TOKEN) no encontrado.")
|
|
|
|
| 21 |
self.hf_client = InferenceClient(api_key=hf_token)
|
| 22 |
self.agent = ImprovedSemanticAgent()
|
| 23 |
if not self.agent.is_ready:
|
|
@@ -25,11 +26,12 @@ class LlamaRefiner:
|
|
| 25 |
logger.info(f"Inicialización del agente: {init_msg}")
|
| 26 |
if not self.agent.is_ready:
|
| 27 |
logger.error("❌ Agente NO está listo.")
|
|
|
|
| 28 |
logger.info("🚀 Cargando traductor local (es → en)...")
|
| 29 |
self.translator = pipeline(
|
| 30 |
"translation_es_to_en",
|
| 31 |
model="Helsinki-NLP/opus-mt-es-en",
|
| 32 |
-
device=-1
|
| 33 |
)
|
| 34 |
logger.info("✅ Traductor local listo.")
|
| 35 |
|
|
@@ -38,31 +40,10 @@ class LlamaRefiner:
|
|
| 38 |
return text
|
| 39 |
try:
|
| 40 |
result = self.translator(text, max_length=250, clean_up_tokenization_spaces=True)
|
| 41 |
-
|
| 42 |
except Exception as e:
|
| 43 |
logger.warning(f"Traducción local fallida: {e}. Usando texto original.")
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
user_text_lower = text.lower()
|
| 47 |
-
output = raw_translation
|
| 48 |
-
|
| 49 |
-
if any(kw in user_text_lower for kw in ["llamas", "ardiendo", "quem", "incendi", "fuego"]):
|
| 50 |
-
output = output.replace("fiery", "on fire")
|
| 51 |
-
if not any(term in output.lower() for term in ["on fire", "burning", "in flames", "ablaze", "aflame"]):
|
| 52 |
-
output = output + " on fire"
|
| 53 |
-
|
| 54 |
-
if any(kw in user_text_lower for kw in ["oro", "dorado"]):
|
| 55 |
-
if "golden" not in output.lower() and "gold" not in output.lower():
|
| 56 |
-
if any(w in output.lower() for w in ["statue", "sculpture", "figure"]):
|
| 57 |
-
output = output + " made of gold"
|
| 58 |
-
else:
|
| 59 |
-
output = output + " golden"
|
| 60 |
-
|
| 61 |
-
if any(kw in user_text_lower for kw in ["congelado", "hielo", "helado", "ice"]):
|
| 62 |
-
if not any(term in output.lower() for term in ["frozen", "ice", "icy"]):
|
| 63 |
-
output = output + " frozen"
|
| 64 |
-
|
| 65 |
-
return output.strip()
|
| 66 |
|
| 67 |
def retrieve_similar_examples(self, user_prompt_en: str, category: str = "auto", k: int = 6) -> list:
|
| 68 |
if not self.agent.is_ready:
|
|
@@ -71,6 +52,7 @@ class LlamaRefiner:
|
|
| 71 |
query_embedding = self.agent.embedding_model.encode([user_prompt_en], convert_to_numpy=True, normalize_embeddings=True)[0]
|
| 72 |
query_embedding = query_embedding.astype('float32').reshape(1, -1)
|
| 73 |
distances, indices = self.agent.index.search(query_embedding, 50)
|
|
|
|
| 74 |
candidates = []
|
| 75 |
for idx in indices[0]:
|
| 76 |
if 0 <= idx < len(self.agent.indexed_examples):
|
|
@@ -80,19 +62,25 @@ class LlamaRefiner:
|
|
| 80 |
if isinstance(caption, str) and len(caption) > 10:
|
| 81 |
if category == "auto" or ex_category == category:
|
| 82 |
candidates.append((idx, caption, ex_category))
|
|
|
|
| 83 |
if not candidates:
|
| 84 |
return []
|
|
|
|
| 85 |
if len(candidates) <= k:
|
| 86 |
return [cap for _, cap, _ in candidates]
|
|
|
|
| 87 |
candidate_texts = [cap for _, cap, _ in candidates]
|
| 88 |
pairs = [[user_prompt_en, cand] for cand in candidate_texts]
|
| 89 |
scores = self.agent.reranker.predict(pairs)
|
|
|
|
| 90 |
scored = [(candidates[i][1], scores[i]) for i in range(len(candidates))]
|
| 91 |
scored.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
| 92 |
top_examples = [ex for ex, _ in scored[:k]]
|
| 93 |
return top_examples
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
-
logger.error(f"Error en recuperación: {e}")
|
| 96 |
try:
|
| 97 |
return [
|
| 98 |
self.agent.indexed_examples[idx]['caption']
|
|
@@ -102,13 +90,103 @@ class LlamaRefiner:
|
|
| 102 |
except:
|
| 103 |
return []
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
def refine_with_llm(self, user_prompt: str, category: str = "auto") -> Tuple[str, str, list]:
|
| 106 |
user_prompt_en = self.translate_to_english(user_prompt)
|
| 107 |
examples = self.retrieve_similar_examples(user_prompt_en, category=category, k=6)
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
enhanced_prompt, _ = self.agent.enhance_prompt(user_prompt_en, category=category)
|
| 111 |
-
return enhanced_prompt.strip(), "
|
| 112 |
|
| 113 |
class SDXLGenerator:
|
| 114 |
def __init__(self):
|
|
@@ -145,6 +223,7 @@ def create_interface():
|
|
| 145 |
return "", "", "Prompt vacío."
|
| 146 |
if refiner is None:
|
| 147 |
return "", "", "Servicios no disponibles."
|
|
|
|
| 148 |
progress(0.2, desc="🌍 Traduciendo...")
|
| 149 |
category_map = {
|
| 150 |
"Automática": "auto",
|
|
@@ -155,6 +234,7 @@ def create_interface():
|
|
| 155 |
"Texto": "text"
|
| 156 |
}
|
| 157 |
category_en = category_map.get(category_es, "auto")
|
|
|
|
| 158 |
refined, info, examples = refiner.refine_with_llm(prompt, category_en)
|
| 159 |
examples_text = "\n".join(f"{i+1}. {ex}" for i, ex in enumerate(examples)) if examples else "Ninguno"
|
| 160 |
status = f"Prompt refinado: {refined}\n{info}"
|
|
@@ -165,6 +245,7 @@ def create_interface():
|
|
| 165 |
return None, "❌ No hay prompt refinado. Primero haz clic en 'Refinar prompt'."
|
| 166 |
if generator is None:
|
| 167 |
return None, "❌ Generador no inicializado."
|
|
|
|
| 168 |
aspect_ratios = {
|
| 169 |
"1:1": (1024, 1024),
|
| 170 |
"16:9": (1344, 768),
|
|
@@ -175,12 +256,12 @@ def create_interface():
|
|
| 175 |
"9:21": (640, 1536),
|
| 176 |
}
|
| 177 |
width, height = aspect_ratios.get(aspect_ratio, (1024, 1024))
|
| 178 |
-
progress(0.5, desc="🎨 Generando imagen...")
|
| 179 |
try:
|
| 180 |
image_path, gen_msg = generator.generate_image(refined_prompt, width, height)
|
| 181 |
return image_path, gen_msg
|
| 182 |
except Exception as e:
|
| 183 |
-
error_msg = f"❌ Error: {str(e)}"
|
| 184 |
logger.error(error_msg)
|
| 185 |
return None, error_msg
|
| 186 |
|
|
@@ -209,8 +290,10 @@ def create_interface():
|
|
| 209 |
prompt_input = gr.Textbox(label="Tu idea (en castellano)", lines=3, placeholder="Ej: un mercado en Antigua Guatemala...")
|
| 210 |
category_es = gr.Dropdown(label="Categoría", choices=CATEGORY_CHOICES_ES, value="Automática")
|
| 211 |
aspect = gr.Dropdown(label="Proporción", choices=["1:1", "16:9", "9:16", "4:3", "3:4", "21:9", "9:21"], value="1:1")
|
|
|
|
| 212 |
refine_btn = gr.Button("🔄 Refinar prompt", variant="secondary")
|
| 213 |
generate_btn = gr.Button("🎨 Generar imagen", variant="primary")
|
|
|
|
| 214 |
with gr.Column():
|
| 215 |
refined_output = gr.Textbox(
|
| 216 |
label="Prompt refinado (inglés)",
|
|
|
|
| 1 |
+
# app.py — PromptCraft: Refinamiento Estructural de Prompts (con fallback a Together vía HF Router)
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
import time
|
|
|
|
| 18 |
hf_token = os.getenv("PS")
|
| 19 |
if not hf_token:
|
| 20 |
raise ValueError("Secret 'PS' (HF_TOKEN) no encontrado.")
|
| 21 |
+
# Cliente para fallback original (Hyperbolic)
|
| 22 |
self.hf_client = InferenceClient(api_key=hf_token)
|
| 23 |
self.agent = ImprovedSemanticAgent()
|
| 24 |
if not self.agent.is_ready:
|
|
|
|
| 26 |
logger.info(f"Inicialización del agente: {init_msg}")
|
| 27 |
if not self.agent.is_ready:
|
| 28 |
logger.error("❌ Agente NO está listo.")
|
| 29 |
+
|
| 30 |
logger.info("🚀 Cargando traductor local (es → en)...")
|
| 31 |
self.translator = pipeline(
|
| 32 |
"translation_es_to_en",
|
| 33 |
model="Helsinki-NLP/opus-mt-es-en",
|
| 34 |
+
device=-1 # CPU
|
| 35 |
)
|
| 36 |
logger.info("✅ Traductor local listo.")
|
| 37 |
|
|
|
|
| 40 |
return text
|
| 41 |
try:
|
| 42 |
result = self.translator(text, max_length=250, clean_up_tokenization_spaces=True)
|
| 43 |
+
return result[0]['translation_text'].strip()
|
| 44 |
except Exception as e:
|
| 45 |
logger.warning(f"Traducción local fallida: {e}. Usando texto original.")
|
| 46 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
def retrieve_similar_examples(self, user_prompt_en: str, category: str = "auto", k: int = 6) -> list:
|
| 49 |
if not self.agent.is_ready:
|
|
|
|
| 52 |
query_embedding = self.agent.embedding_model.encode([user_prompt_en], convert_to_numpy=True, normalize_embeddings=True)[0]
|
| 53 |
query_embedding = query_embedding.astype('float32').reshape(1, -1)
|
| 54 |
distances, indices = self.agent.index.search(query_embedding, 50)
|
| 55 |
+
|
| 56 |
candidates = []
|
| 57 |
for idx in indices[0]:
|
| 58 |
if 0 <= idx < len(self.agent.indexed_examples):
|
|
|
|
| 62 |
if isinstance(caption, str) and len(caption) > 10:
|
| 63 |
if category == "auto" or ex_category == category:
|
| 64 |
candidates.append((idx, caption, ex_category))
|
| 65 |
+
|
| 66 |
if not candidates:
|
| 67 |
return []
|
| 68 |
+
|
| 69 |
if len(candidates) <= k:
|
| 70 |
return [cap for _, cap, _ in candidates]
|
| 71 |
+
|
| 72 |
candidate_texts = [cap for _, cap, _ in candidates]
|
| 73 |
pairs = [[user_prompt_en, cand] for cand in candidate_texts]
|
| 74 |
scores = self.agent.reranker.predict(pairs)
|
| 75 |
+
|
| 76 |
scored = [(candidates[i][1], scores[i]) for i in range(len(candidates))]
|
| 77 |
scored.sort(key=lambda x: x[1], reverse=True)
|
| 78 |
+
|
| 79 |
top_examples = [ex for ex, _ in scored[:k]]
|
| 80 |
return top_examples
|
| 81 |
+
|
| 82 |
except Exception as e:
|
| 83 |
+
logger.error(f"Error en recuperación con re-ranking y categoría: {e}")
|
| 84 |
try:
|
| 85 |
return [
|
| 86 |
self.agent.indexed_examples[idx]['caption']
|
|
|
|
| 90 |
except:
|
| 91 |
return []
|
| 92 |
|
| 93 |
+
def _clean_output(self, text: str) -> str:
|
| 94 |
+
text = text.strip()
|
| 95 |
+
if text.startswith(("Here is", "Final:", "Output:", '"', "'")):
|
| 96 |
+
text = text.split(":", 1)[-1].strip().strip("\"'")
|
| 97 |
+
return text
|
| 98 |
+
|
| 99 |
def refine_with_llm(self, user_prompt: str, category: str = "auto") -> Tuple[str, str, list]:
|
| 100 |
user_prompt_en = self.translate_to_english(user_prompt)
|
| 101 |
examples = self.retrieve_similar_examples(user_prompt_en, category=category, k=6)
|
| 102 |
|
| 103 |
+
if not examples:
|
| 104 |
+
fallbacks = {
|
| 105 |
+
"entity": [
|
| 106 |
+
"an elderly maya man weaving a hammock under a ceiba tree, golden hour light filtering through leaves, Antigua Guatemala setting, hyperrealistic style",
|
| 107 |
+
"a young indigenous woman in traditional Kekchi attire by Lake Atitlán, morning mist, volcano backdrop, soft natural light, documentary photography"
|
| 108 |
+
],
|
| 109 |
+
"style": [
|
| 110 |
+
"oil painting of a forest in autumn, warm amber and crimson tones, impasto brushstrokes, style of Vincent van Gogh",
|
| 111 |
+
"cyberpunk cityscape at night, neon reflections on wet streets, cinematic lighting, style of Blade Runner 2049"
|
| 112 |
+
],
|
| 113 |
+
"composition": [
|
| 114 |
+
"a lone wolf on a snowy mountain peak, northern lights in the sky, wind blowing snow, rule of thirds composition, photorealistic wildlife"
|
| 115 |
+
],
|
| 116 |
+
"imaginative": [
|
| 117 |
+
"a floating island with ancient ruins, waterfalls cascading into clouds, golden hour, fantasy concept art, highly detailed"
|
| 118 |
+
],
|
| 119 |
+
"text": [
|
| 120 |
+
"minimalist typography design, the word 'LIBERTAD' in bold sans-serif, high contrast black on white, professional layout"
|
| 121 |
+
],
|
| 122 |
+
"auto": [
|
| 123 |
+
"an elderly maya man weaving a hammock under a ceiba tree, golden hour light filtering through leaves, Antigua Guatemala setting, hyperrealistic style, intricate textures of rope and bark",
|
| 124 |
+
"a cyberpunk street at night in Tokyo, neon signs reflecting on wet pavement, rain mist in air, distant flying cars, cinematic wide shot, Blade Runner atmosphere",
|
| 125 |
+
"a library interior with tall oak bookshelves, sunbeams through stained glass windows, dust particles floating, oil painting style, warm amber tones, masterpiece",
|
| 126 |
+
"a lone wolf howling on a snowy mountain peak, northern lights in the sky, wind blowing snow, photorealistic wildlife photography, 8k detailed fur",
|
| 127 |
+
"a steampunk airship floating above Victorian London, copper pipes and brass gears, cloudy sky, detailed machinery, concept art by Jakub Rozalski",
|
| 128 |
+
"a young woman in traditional Kekchi attire standing by Lake Atitlán, morning mist, volcano backdrop, soft natural light, documentary photography style"
|
| 129 |
+
]
|
| 130 |
+
}
|
| 131 |
+
examples = fallbacks.get(category, fallbacks["auto"])
|
| 132 |
+
logger.warning(f"No se encontraron ejemplos para categoría '{category}'. Usando fallback.")
|
| 133 |
+
|
| 134 |
+
system_message = (
|
| 135 |
+
"You are a prompt engineering analyst for diffusion models (Midjourney, FLUX, SDXL). "
|
| 136 |
+
"Analyze the DESCRIPTIVE GRAMMAR (word order, phrasing, element sequence) used in the reference prompts below. "
|
| 137 |
+
"Reconstruct the user's concept using that exact same descriptive logic. "
|
| 138 |
+
"Do NOT follow a predefined template (e.g. subject→lighting→style). "
|
| 139 |
+
"Do NOT invent elements not implied by the user. "
|
| 140 |
+
"Preserve the user's core intent exactly. "
|
| 141 |
+
"Output ONLY the final prompt in English. No explanations, no markdown."
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
user_message = "User concept:\n" + user_prompt_en + "\n\nReference prompts (observe their descriptive grammar):\n" + "\n".join(examples)
|
| 145 |
+
|
| 146 |
+
# ✅ PRIMERO: Intentar con Together vía HF Router (más estable)
|
| 147 |
+
try:
|
| 148 |
+
client = OpenAI(
|
| 149 |
+
base_url="https://router.huggingface.co/v1",
|
| 150 |
+
api_key=os.getenv("PS")
|
| 151 |
+
)
|
| 152 |
+
completion = client.chat.completions.create(
|
| 153 |
+
model="meta-llama/Llama-3.2-3B-Instruct:together",
|
| 154 |
+
messages=[
|
| 155 |
+
{"role": "system", "content": system_message},
|
| 156 |
+
{"role": "user", "content": user_message}
|
| 157 |
+
],
|
| 158 |
+
max_tokens=250,
|
| 159 |
+
temperature=0.2,
|
| 160 |
+
timeout=30.0
|
| 161 |
+
)
|
| 162 |
+
refined = self._clean_output(completion.choices[0].message.content)
|
| 163 |
+
info = f"🧠 Refinado con Llama-3.2-3B vía Together (HF Router, {len(examples)} ejemplos, categoría: {category})."
|
| 164 |
+
return refined, info, examples
|
| 165 |
+
|
| 166 |
+
except (APIError, Timeout, Exception) as e1:
|
| 167 |
+
logger.error(f"Error con Together (HF Router): {e1}")
|
| 168 |
+
|
| 169 |
+
# 🔄 SEGUNDO: Intentar con HF predeterminado (Hyperbolic)
|
| 170 |
+
try:
|
| 171 |
+
completion = self.hf_client.chat.completions.create(
|
| 172 |
+
model="meta-llama/Llama-3.2-3B-Instruct",
|
| 173 |
+
messages=[
|
| 174 |
+
{"role": "system", "content": system_message},
|
| 175 |
+
{"role": "user", "content": user_message}
|
| 176 |
+
],
|
| 177 |
+
max_tokens=250,
|
| 178 |
+
temperature=0.2
|
| 179 |
+
)
|
| 180 |
+
refined = self._clean_output(completion.choices[0].message.content)
|
| 181 |
+
info = f"🧠 Fallback: HF (Hyperbolic, {len(examples)} ejemplos)."
|
| 182 |
+
return refined, info, examples
|
| 183 |
+
|
| 184 |
+
except Exception as e2:
|
| 185 |
+
logger.error(f"También falló Hyperbolic: {e2}")
|
| 186 |
+
|
| 187 |
+
# ⚠️ ÚLTIMO RECURSO: enriquecimiento semántico local
|
| 188 |
enhanced_prompt, _ = self.agent.enhance_prompt(user_prompt_en, category=category)
|
| 189 |
+
return enhanced_prompt.strip(), f"⚠️ LLMs no disponibles. Usando enriquecimiento semántico (categoría: {category}).", examples
|
| 190 |
|
| 191 |
class SDXLGenerator:
|
| 192 |
def __init__(self):
|
|
|
|
| 223 |
return "", "", "Prompt vacío."
|
| 224 |
if refiner is None:
|
| 225 |
return "", "", "Servicios no disponibles."
|
| 226 |
+
|
| 227 |
progress(0.2, desc="🌍 Traduciendo...")
|
| 228 |
category_map = {
|
| 229 |
"Automática": "auto",
|
|
|
|
| 234 |
"Texto": "text"
|
| 235 |
}
|
| 236 |
category_en = category_map.get(category_es, "auto")
|
| 237 |
+
|
| 238 |
refined, info, examples = refiner.refine_with_llm(prompt, category_en)
|
| 239 |
examples_text = "\n".join(f"{i+1}. {ex}" for i, ex in enumerate(examples)) if examples else "Ninguno"
|
| 240 |
status = f"Prompt refinado: {refined}\n{info}"
|
|
|
|
| 245 |
return None, "❌ No hay prompt refinado. Primero haz clic en 'Refinar prompt'."
|
| 246 |
if generator is None:
|
| 247 |
return None, "❌ Generador no inicializado."
|
| 248 |
+
|
| 249 |
aspect_ratios = {
|
| 250 |
"1:1": (1024, 1024),
|
| 251 |
"16:9": (1344, 768),
|
|
|
|
| 256 |
"9:21": (640, 1536),
|
| 257 |
}
|
| 258 |
width, height = aspect_ratios.get(aspect_ratio, (1024, 1024))
|
| 259 |
+
progress(0.5, desc="🎨 Generando imagen (puede tardar 10-20s)...")
|
| 260 |
try:
|
| 261 |
image_path, gen_msg = generator.generate_image(refined_prompt, width, height)
|
| 262 |
return image_path, gen_msg
|
| 263 |
except Exception as e:
|
| 264 |
+
error_msg = f"❌ Error al generar: {str(e)}"
|
| 265 |
logger.error(error_msg)
|
| 266 |
return None, error_msg
|
| 267 |
|
|
|
|
| 290 |
prompt_input = gr.Textbox(label="Tu idea (en castellano)", lines=3, placeholder="Ej: un mercado en Antigua Guatemala...")
|
| 291 |
category_es = gr.Dropdown(label="Categoría", choices=CATEGORY_CHOICES_ES, value="Automática")
|
| 292 |
aspect = gr.Dropdown(label="Proporción", choices=["1:1", "16:9", "9:16", "4:3", "3:4", "21:9", "9:21"], value="1:1")
|
| 293 |
+
|
| 294 |
refine_btn = gr.Button("🔄 Refinar prompt", variant="secondary")
|
| 295 |
generate_btn = gr.Button("🎨 Generar imagen", variant="primary")
|
| 296 |
+
|
| 297 |
with gr.Column():
|
| 298 |
refined_output = gr.Textbox(
|
| 299 |
label="Prompt refinado (inglés)",
|