Spaces:
No application file
No application file
File size: 8,956 Bytes
9a800ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import streamlit as st
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.vectorstores import FAISS
import os
from dotenv import load_dotenv
import google.generativeai as genai
import pandas as pd
import json
from io import BytesIO
import tempfile
# Load environment variables
load_dotenv()
# Set up embeddings
HF_TOKEN = os.getenv('HF_TOKEN')
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# API keys
api_key = os.getenv('API_KEY')
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
genai.configure(api_key=GEMINI_API_KEY)
# Set up generative model
model = genai.GenerativeModel('gemini-pro')
def create_job_post(job_title, location, exp):
prompt = (
f"Create a job opening post for platforms like Internshala, LinkedIn, and Naukri.com. "
f"The post should include the job title: {job_title}, location: {location}, and required experience: {exp}. "
f"Make it attractive, include skills (if possible but the skills in boxes and highlight them) required, who can apply, benefits, and other necessary details. "
f"The post should be 100-200 words."
)
try:
# Replace 'model.generate_content' with the actual method to generate content
response = model.generate_content(prompt) # assuming 'model' is defined elsewhere
return response.text
except Exception as e:
return f"Error generating response: {e}"
# Streamlit app title
st.title("Recruitment AI")
# Job title, location, and experience input fields
job_title = st.text_input("Enter the job title you are looking for")
location = st.text_input("Enter the location you are looking for")
exp = st.text_input("Enter the experience you are looking for")
# Button to generate job post
if st.button("Create Job Post"):
if job_title and location and exp:
job_post = create_job_post(job_title, location, exp)
st.write(job_post)
else:
st.warning("Please fill in all fields to generate the job post.")
job_post = create_job_post(job_title, location, exp)
# Resume scoring section
llm = ChatGroq(groq_api_key=api_key, model_name="gemma-7b-it")
llm_2 = ChatGroq(groq_api_key=api_key, model_name="gemma-7b-it")
jd=st.file_uploader("Upload Job Description", type="pdf")
def get_jd(jd):
try:
# Use a temporary file to save the uploaded file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
temp_pdf.write(jd.getvalue())
temp_pdf_path = temp_pdf.name
# Load the PDF using PyPDFLoader
loader = PyPDFLoader(temp_pdf_path)
docs = loader.load()
finally:
# Remove the temporary file after processing
if os.path.exists(temp_pdf_path):
os.remove(temp_pdf_path)
# Text splitting for embeddings
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
splits = text_splitter.split_documents(docs)
# Create FAISS vectorstore for retrieval
vectorstore = FAISS.from_documents(splits, embeddings)
retriever = vectorstore.as_retriever()
# Define prompt and QA chain
system_prompt = (
f"Extract the Job description from the uploaded file in proper format."
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{context}\n{input}"),
]
)
# Create question-answering chain
question_answer_chain = create_stuff_documents_chain(llm_2, qa_prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
try:
# Retrieve the job description using the chain
response = rag_chain.invoke({
"input": "Describe the job description in proper format"
})
job_description = response["answer"]
return job_description
except Exception as e:
raise RuntimeError(f"Error retrieving job description: {e}")
if jd:
job_description = get_jd(jd)
# File uploader for PDF resumes
uploaded_files = st.file_uploader("Choose PDF files", type="pdf", accept_multiple_files=True)
# Function to process PDFs in batches of 4
def process_pdfs_in_batches(files):
batch_size = 4
num_batches = (len(files) // batch_size) + (1 if len(files) % batch_size != 0 else 0)
all_json_data = []
for i in range(num_batches):
batch = files[i * batch_size: (i + 1) * batch_size] # Select a batch of files
documents = [] # List to hold all document contents
for j, uploaded_file in enumerate(batch):
try:
# Use a temporary file to save the uploaded file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
temp_pdf.write(uploaded_file.getvalue())
temp_pdf_path = temp_pdf.name
# Load the PDF using PyPDFLoader
loader = PyPDFLoader(temp_pdf_path)
docs = loader.load()
documents.extend(docs)
finally:
# Remove the temporary file after processing
if os.path.exists(temp_pdf_path):
os.remove(temp_pdf_path)
# Text splitting for embeddings
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
splits = text_splitter.split_documents(documents)
# Create FAISS vectorstore for retrieval
vectorstore = FAISS.from_documents(splits, embeddings)
retriever = vectorstore.as_retriever()
# Define prompt and QA chain
system_prompt = (
f"You are a smart AI agent tasked with evaluating resumes against the job description: "
f"Job Title: {job_title}, Location: {location}, Experience: {exp}. "
f"Your evaluation should provide a score (0-100) for each resume based on skills, experience, and other factors. "
f"Extract the following details from each uploaded PDF: Name, Contact Number, Email,Address and the calculated Score. "
"Output must be a JSON array of dictionaries, where each dictionary has the keys: 'Name', 'Contact Number', 'Email', 'Address','pdf link or name' and 'Score' "
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{context}\n{input}"),
]
)
# Create question-answering chain
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
try:
# Button for scoring resumes
response = rag_chain.invoke({
"input": "Evaluate these resumes and provide scores scores should be very accurate and strictly evaluated as it would be used by recruiter, as given by system prompt ,"
" just provide the json data only not anything else and make sure to be consistent with the output and generate text only. Output must be a JSON array of dictionaries in text format, "
"where each dictionary has the keys: 'Name', 'Contact Number', 'Email','Address and 'Score' .Just provide the json data nothing else."
"Also the generated data should be equal to uploaded resumes not more nor less"
})
json_data = json.loads(response["answer"])
# Append the JSON data to the all_json_data list
all_json_data.extend(json_data)
#st.write(json_data)
except Exception as e:
st.error(f"Error: {e}")
# Once all batches are processed, you can use all_json_data as needed
# For example, converting it into a DataFrame and displaying
df = pd.DataFrame(all_json_data)
st.dataframe(
df.style
# Highlight min values
.set_table_styles([
{'selector': 'thead th', 'props': [('background-color', '#4CAF50'), ('color', 'white')]},
# Table header style
{'selector': 'tbody td', 'props': [('border', '1px solid #ddd'), ('padding', '8px')]} # Table body style
])
)
# Call the batch processing function if files are uploaded
if uploaded_files:
process_pdfs_in_batches(uploaded_files)
|