Spaces:
Sleeping
Sleeping
File size: 3,287 Bytes
4c95634 7ee3d61 ade2028 0b184f7 957adf6 0b184f7 957adf6 6c38b0b 0b184f7 ade2028 5b7aab3 6ded4c2 ade2028 7ee3d61 7090b6d 7ee3d61 6ded4c2 7ee3d61 ade2028 6ded4c2 ade2028 ba5f007 6ded4c2 ba5f007 c8164e7 1125ba5 6ded4c2 7ee3d61 ade2028 99dcb22 6ded4c2 4c95634 7ee3d61 ade2028 7ee3d61 99dcb22 6c38b0b 7ee3d61 4c95634 6ded4c2 4c95634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
import requests
import json
from smolagents import CodeAgent
import logging
from tenacity import retry, stop_after_attempt, wait_exponential
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
HF_SPACE_URL = "https://manavraj-troubleshoot-mcp.hf.space"
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def call_mcp_server(message: str, tool_type: str = "knowledge_base") -> str:
"""Call MCP server endpoint"""
try:
tool_endpoint_map = {
"knowledge_base": "predict_1",
"web_search": "predict_2",
"formatter": "predict_3"
}
endpoint = f"{HF_SPACE_URL}/gradio_api/mcp/sse"
response = requests.post(
endpoint,
json={"data": [message]},
timeout=30,
headers={"Content-Type": "application/json"}
)
response.raise_for_status()
if response.text.startswith("event: predict"):
data = json.loads(response.text.split("\n")[1][5:])
return data["data"][0]
return response.json()["data"][0]
except Exception as e:
logger.error(f"API call failed: {str(e)}")
return f"Error: {str(e)}"
agent = CodeAgent(
tools=[],
model="microsoft/DialoGPT-medium",
system_prompt="""{{authorized_imports}}
- requests for API calls
- standard Python libraries
{{managed_agents_descriptions}}
You are a Technical Support Assistant with these capabilities:
1. Troubleshooting technical issues
2. Finding information via web search
3. Formatting instructions
Access tools through MCP server:
- knowledge_base: For technical issues
- web_search: For information lookup
- formatter: To organize steps
Response workflow:
1. Analyze user request
2. Choose appropriate tool
3. Return clear response
Example:
USER: My wifi disconnected
THOUGHT: Should use knowledge_base
ACTION: knowledge_base("wifi disconnection")
RESPONSE: Try these steps: [solution steps]
Important:
- Always return the full response including ACTION and RESPONSE
- Never show internal workflow to user
- If no tool is needed, respond directly"""
)
def chat_interface(message: str, history: list) -> str:
"""Handle chat interaction"""
try:
tool_mapping = {
"knowledge_base": lambda x: call_mcp_server(x, "knowledge_base"),
"web_search": lambda x: call_mcp_server(x, "web_search"),
"formatter": lambda x: call_mcp_server(x, "formatter")
}
response = agent.run(message)
if isinstance(response, str):
if "ACTION:" in response and "RESPONSE:" in response:
final = response.split("RESPONSE:")[-1].strip()
return final if final else "I couldn't process that request."
return response
return str(response)
except Exception as e:
logger.error(f"Chat error: {str(e)}")
return f"Error processing your request: {str(e)}"
demo = gr.ChatInterface(
fn=chat_interface,
title="🔧 Technical Support",
examples=["Wifi not working", "Find Windows 11 specs", "Format: Turn off. Wait. Restart"]
)
if __name__ == "__main__":
demo.launch() |