File size: 13,737 Bytes
8b04ef6
6849c54
8b04ef6
 
 
 
 
 
63406cf
051f255
8b04ef6
 
63406cf
8b04ef6
 
 
63406cf
 
051f255
 
 
 
385ef9c
 
 
 
 
 
 
 
 
051f255
 
63406cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
051f255
 
 
 
 
8b04ef6
6849c54
 
 
 
 
 
 
 
 
 
051f255
 
6849c54
 
 
 
 
 
 
 
385ef9c
6849c54
 
 
 
 
 
 
 
 
 
 
 
 
 
385ef9c
6849c54
 
 
 
 
 
 
 
 
 
 
 
385ef9c
6849c54
 
 
 
 
 
 
 
 
 
 
385ef9c
6849c54
385ef9c
 
 
 
 
 
 
 
 
 
 
6849c54
 
 
 
 
 
385ef9c
6849c54
385ef9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6849c54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b04ef6
 
63406cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
051f255
6849c54
051f255
63406cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6849c54
 
051f255
 
385ef9c
051f255
 
 
 
63406cf
6849c54
 
051f255
 
385ef9c
051f255
 
 
63406cf
6849c54
 
051f255
 
385ef9c
051f255
 
 
63406cf
6849c54
 
051f255
 
385ef9c
051f255
 
 
63406cf
051f255
 
 
 
385ef9c
051f255
 
 
63406cf
051f255
 
 
 
385ef9c
051f255
 
 
63406cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

import os
import json
import numpy as np
import librosa
import warnings
import pandas as pd
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.schema import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from huggingface_hub import InferenceClient

warnings.filterwarnings("ignore")

# Enhanced LLM support with multiple providers
def generate_music_insight(analysis_text, provider="groq", model="llama3-70b-8192"):
    try:
        prompt_template = PromptTemplate(
            input_variables=["analysis_text"],
            template="""
            You're an AI music expert. Based on the musical analysis below, provide insight on:
            - Genre and mood
            - Instrumentation and music type
            - Suggestions for improvement
            - Commercial/viral potential
            - Suitable platforms or audience
            Musical Analysis: {analysis_text}
            Answer in a concise paragraph.
            """
        )
        final_prompt = prompt_template.format(analysis_text=analysis_text)
        
        # Support for multiple LLM providers
        if provider.lower() == "groq":
            llm = ChatGroq(
                model_name=model, 
                groq_api_key=os.getenv("GROQ_API_KEY", "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")
            )
        elif provider.lower() == "openai":
            llm = ChatOpenAI(
                model_name=model,
                openai_api_key=os.getenv("OPENAI_API_KEY", "sk-demo-key")
            )
        elif provider.lower() == "huggingface":
            # For HuggingFace models, we'll use their Inference API
            client = InferenceClient(
                model=model,
                token=os.getenv("HF_API_TOKEN", "hf_demo_token")
            )
            return client.text_generation(
                final_prompt,
                max_new_tokens=512,
                temperature=0.7,
                return_full_text=False
            )
        else:
            raise ValueError(f"Unsupported provider: {provider}")
            
        return llm.invoke(final_prompt)
    except Exception as e:
        return f"LLM Error: {str(e)}"

# AudioFeatureExtractor (unchanged)
class AudioFeatureExtractor:
    def __init__(self, file_path):
        self.file_path = file_path
        self.y = None
        self.sr = None
        self.features = {}

    def load_audio(self):
        try:
            self.y, self.sr = librosa.load(self.file_path, sr=None)
            return True
        except Exception as e:
            print("Audio loading error:", e)
            return False

    def extract_basic_features(self):
        duration = len(self.y) / self.sr
        tempo, beat_frames = librosa.beat.beat_track(y=self.y, sr=self.sr)
        rms = librosa.feature.rms(y=self.y)[0]
        zcr = librosa.feature.zero_crossing_rate(self.y)[0]
        y_harmonic, y_percussive = librosa.effects.hpss(self.y)
        
        self.features['basic'] = {
            'duration': float(duration),
            'tempo': float(tempo),
            'num_beats': len(beat_frames),
            'avg_rms_energy': float(np.mean(rms)),
            'avg_zero_crossing_rate': float(np.mean(zcr)),
            'harmonic_percussive_ratio': float(np.sum(np.abs(y_harmonic)) / (np.sum(np.abs(y_percussive)) + 1e-10))
        }

    def extract_spectral_features(self):
        centroid = librosa.feature.spectral_centroid(y=self.y, sr=self.sr)[0]
        contrast = librosa.feature.spectral_contrast(y=self.y, sr=self.sr)
        rolloff = librosa.feature.spectral_rolloff(y=self.y, sr=self.sr)[0]
        mfccs = librosa.feature.mfcc(y=self.y, sr=self.sr, n_mfcc=13)
        
        self.features['spectral'] = {
            'avg_spectral_centroid': float(np.mean(centroid)),
            'avg_spectral_contrast': [float(np.mean(band)) for band in contrast],
            'avg_spectral_rolloff': float(np.mean(rolloff)),
            'avg_mfccs': [float(np.mean(m)) for m in mfccs]
        }

    def extract_harmonic_features(self):
        chroma = librosa.feature.chroma_stft(y=self.y, sr=self.sr)
        tonnetz = librosa.feature.tonnetz(y=self.y, sr=self.sr)
        chroma_avg = np.mean(librosa.feature.chroma_cqt(y=self.y, sr=self.sr), axis=1)
        key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
        
        self.features['harmonic'] = {
            'chroma_energy': [float(np.mean(c)) for c in chroma],
            'tonnetz_features': [float(np.mean(t)) for t in tonnetz],
            'estimated_key': key_names[np.argmax(chroma_avg)],
            'key_strength': float(np.max(chroma_avg) / (np.sum(chroma_avg) + 1e-10))
        }

    def detect_instruments(self):
        perc_ratio = self.features['basic']['harmonic_percussive_ratio']
        centroid = self.features['spectral']['avg_spectral_centroid']
        mfccs = self.features['spectral']['avg_mfccs']
        
        instruments = []
        if perc_ratio < 0.8:
            instruments.append("Drums/Percussion")
        if centroid < 1000:
            instruments.append("Bass")
        if 1000 <= centroid <= 3000:
            instruments.append("Guitar/Piano")
        if centroid > 3000:
            instruments.append("High-pitched instruments")
        if 1500 < centroid < 4000 and abs(mfccs[2]) > 5:
            instruments.append("Vocals")
            
        self.features['detected_instruments'] = instruments

    def analyze_mood(self):
        tempo = self.features['basic']['tempo']
        energy = self.features['basic']['avg_rms_energy']
        centroid = self.features['spectral']['avg_spectral_centroid']
        
        moods = []
        if tempo < 80:
            moods.append("Slow/Relaxed")
        elif tempo <= 120:
            moods.append("Moderate/Balanced")
        else:
            moods.append("Fast/Energetic")
            
        if energy < 0.1:
            moods.append("Calm")
        elif energy > 0.2:
            moods.append("Intense")
            
        if centroid < 1500:
            moods.append("Dark/Warm")
        elif centroid > 3000:
            moods.append("Bright/Sharp")
            
        self.features['mood_indicators'] = moods

    def extract_all_features(self):
        if not self.load_audio():
            return False
        self.extract_basic_features()
        self.extract_spectral_features()
        self.extract_harmonic_features()
        self.detect_instruments()
        self.analyze_mood()
        return True

    def to_json(self):
        summary = {
            "file_name": os.path.basename(self.file_path),
            "duration": self.features['basic']['duration'],
            "tempo": self.features['basic']['tempo'],
            "key": self.features['harmonic']['estimated_key'],
            "energy": self.features['basic']['avg_rms_energy'],
            "detected_instruments": self.features['detected_instruments'],
            "mood_indicators": self.features['mood_indicators'],
            "spectral_centroid": self.features['spectral']['avg_spectral_centroid'],
            "harmonic_percussive_ratio": self.features['basic']['harmonic_percussive_ratio']
        }
        return json.dumps(summary, indent=2)

class MusicAnalysisAgent:
    def __init__(self, model="llama3-70b-8192", provider="groq"):
        self.model = model
        self.provider = provider
        
        # Configure LLM based on provider
        if provider.lower() == "groq":
            groq_api_key = os.getenv("GROQ_API_KEY", "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")
            self.llm = ChatGroq(model_name=model, groq_api_key=groq_api_key)
        elif provider.lower() == "openai":
            openai_api_key = os.getenv("OPENAI_API_KEY", "sk-demo-key")
            self.llm = ChatOpenAI(model_name=model, openai_api_key=openai_api_key)
        elif provider.lower() == "huggingface":
            # For Hugging Face, we'll initialize during the chain execution
            self.hf_client = InferenceClient(
                model=model,
                token=os.getenv("HF_API_TOKEN", "hf_demo_token")
            )
            self.llm = None
        else:
            raise ValueError(f"Unsupported provider: {provider}")
    
    def _run_chain(self, template, features):
        prompt = PromptTemplate.from_template(template)
        
        if self.provider.lower() == "huggingface":
            # For Hugging Face, use direct inference
            try:
                full_prompt = prompt.format(features=features)
                return self.hf_client.text_generation(
                    full_prompt,
                    max_new_tokens=512,
                    temperature=0.7,
                    return_full_text=False
                )
            except Exception as e:
                print(f"HuggingFace inference error: {str(e)}")
                return f"Error with HuggingFace inference: {str(e)}"
        else:
            # For other providers, use LangChain
            chain = prompt | self.llm | StrOutputParser()
            try:
                return chain.invoke({"features": features})
            except Exception as e:
                print(f"Chain execution error: {str(e)}")
                return f"Error in LLM chain: {str(e)}"

    def analyze_song_features(self, features):
        try:
            return self._run_chain("""
            You are a music producer. Analyze: {features}
            Discuss sound profile, genre, emotional tone, and how features interact.
            """, features)
        except Exception as e:
            print(f"Song feature analysis error: {str(e)}")
            return f"Song analysis error. Please check the {self.provider} API connection."

    def get_song_improvement_suggestions(self, features):
        try:
            return self._run_chain("""
            Suggest improvements in production, instrumentation, mix, structure, and effects: {features}
            """, features)
        except Exception as e:
            print(f"Improvement suggestions error: {str(e)}")
            return f"Improvement suggestions unavailable. Please check the {self.provider} API connection."

    def assess_workout_playlist_fit(self, features):
        try:
            return self._run_chain("""
            Evaluate if suitable for workout playlists. Consider tempo, energy, emotion, instruments, context: {features}
            """, features)
        except Exception as e:
            print(f"Workout playlist assessment error: {str(e)}")
            return f"Workout playlist assessment unavailable. Please check the {self.provider} API connection."

    def suggest_marketing_channels(self, features):
        try:
            return self._run_chain("""
            Recommend marketing channels: platforms, social media, audience targeting, playlist strategy: {features}
            """, features)
        except Exception as e:
            print(f"Marketing channels suggestion error: {str(e)}")
            return f"Marketing channel suggestions unavailable. Please check the {self.provider} API connection."

    def recommend_genre_classification(self, features):
        try:
            return self._run_chain("""
            Suggest a musical genre based on the features below. Be specific and explain: {features}
            """, features)
        except Exception as e:
            print(f"Genre classification error: {str(e)}")
            return f"Genre classification unavailable. Please check the {self.provider} API connection."

    def recommend_music_category(self, features):
        try:
            return self._run_chain("""
            Classify this music into a category like Chill, Romantic, Party, Study, Sad, Workout, etc. {features}
            """, features)
        except Exception as e:
            print(f"Music category recommendation error: {str(e)}")
            return f"Music category classification unavailable. Please check the {self.provider} API connection."

    # New enhanced methods for more specific music analysis
    def analyze_lyric_improvement(self, features, current_lyrics=None):
        """Suggests improvements for song lyrics based on the audio analysis"""
        try:
            return self._run_chain("""
            Based on this audio analysis: {features}
            
            Provide recommendations for lyrical content and style that would complement 
            the musical qualities. Consider the mood, tempo, and emotional tone.
            """+ (f"\n\nCurrent lyrics: {current_lyrics}" if current_lyrics else ""), features)
        except Exception as e:
            print(f"Lyric improvement analysis error: {str(e)}")
            return f"Lyric improvement suggestions unavailable. Please check the {self.provider} API connection."
            
    def analyze_commercial_potential(self, features):
        """Analyzes commercial potential of the track"""
        try:
            return self._run_chain("""
            Analyze the commercial potential of this track based on: {features}
            
            Consider:
            1. Current music market trends
            2. Similar successful tracks
            3. Target audience size and engagement
            4. Streaming potential
            5. Licensing opportunities
            
            Provide a detailed assessment with specific recommendations.
            """, features)
        except Exception as e:
            print(f"Commercial potential analysis error: {str(e)}")
            return f"Commercial potential analysis unavailable. Please check the {self.provider} API connection."