Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import cv2 | |
from PIL import Image, ImageOps | |
import numpy as np | |
# st.set_option("deprecation.showfileUploaderEncoding", False) | |
def load_model(): | |
model = tf.keras.models.load_model("F:/igebra/internship/ai ready/machine learning/image_classification_cnn/cifar10_model.h5") | |
return model | |
model = load_model() | |
st.title("CIFAR-10 Image Classification") | |
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
import cv2 | |
import numpy as np | |
def import_and_predict(image_data, model): | |
size = (32, 32) | |
image = np.array(image_data) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if len(image.shape) > 2 else cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
image = cv2.resize(image, size, interpolation=cv2.INTER_AREA) | |
image = image / 255.0 | |
img_reshape = np.expand_dims(image, axis=0) | |
prediction = model.predict(img_reshape) | |
return prediction | |
if uploaded_file is None: | |
st.text("Please upload an image file") | |
else: | |
image = Image.open(uploaded_file) | |
st.image(image, use_column_width=True) | |
predictions = import_and_predict(image, model) | |
print(predictions) | |
print(np.argmax(predictions)) | |
classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"] | |
print(classes[np.argmax(predictions)]) | |
string = ("This image is most likely is :") | |
st.success(f"This image most likely contains: {classes[np.argmax(predictions)]}") | |