# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import unittest from pathlib import Path from typing import Optional from unittest.mock import MagicMock, patch import pytest from transformers.testing_utils import get_tests_dir from smolagents.models import ( ChatMessage, HfApiModel, LiteLLMModel, MessageRole, MLXModel, OpenAIServerModel, TransformersModel, get_clean_message_list, get_tool_json_schema, parse_json_if_needed, parse_tool_args_if_needed, ) from smolagents.tools import tool from .utils.markers import require_run_all class ModelTests(unittest.TestCase): def test_get_json_schema_has_nullable_args(self): @tool def get_weather(location: str, celsius: Optional[bool] = False) -> str: """ Get weather in the next days at given location. Secretly this tool does not care about the location, it hates the weather everywhere. Args: location: the location celsius: the temperature type """ return "The weather is UNGODLY with torrential rains and temperatures below -10°C" assert "nullable" in get_tool_json_schema(get_weather)["function"]["parameters"]["properties"]["celsius"] def test_chatmessage_has_model_dumps_json(self): message = ChatMessage("user", [{"type": "text", "text": "Hello!"}]) data = json.loads(message.model_dump_json()) assert data["content"] == [{"type": "text", "text": "Hello!"}] @unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS") def test_get_mlx_message_no_tool(self): model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=10) messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}] output = model(messages, stop_sequences=["great"]).content assert output.startswith("Hello") @unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS") def test_get_mlx_message_tricky_stop_sequence(self): # In this test HuggingFaceTB/SmolLM2-135M-Instruct generates the token ">'" # which is required to test capturing stop_sequences that have extra chars at the end. model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=100) stop_sequence = " print '>" messages = [{"role": "user", "content": [{"type": "text", "text": f"Please{stop_sequence}'"}]}] # check our assumption that that ">" is followed by "'" assert model.tokenizer.vocab[">'"] assert model(messages, stop_sequences=[]).content == f"I'm ready to help you{stop_sequence}'" # check stop_sequence capture when output has trailing chars assert model(messages, stop_sequences=[stop_sequence]).content == "I'm ready to help you" def test_transformers_message_no_tool(self): model = TransformersModel( model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_new_tokens=5, device_map="cpu", do_sample=False, ) messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}] output = model(messages, stop_sequences=["great"]).content assert output == "assistant\nHello" def test_transformers_message_vl_no_tool(self): from PIL import Image img = Image.open(Path(get_tests_dir("fixtures")) / "000000039769.png") model = TransformersModel( model_id="llava-hf/llava-interleave-qwen-0.5b-hf", max_new_tokens=5, device_map="cpu", do_sample=False, ) messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}, {"type": "image", "image": img}]}] output = model(messages, stop_sequences=["great"]).content assert output == "Hello! How can" def test_parse_tool_args_if_needed(self): original_message = ChatMessage(role="user", content=[{"type": "text", "text": "Hello!"}]) parsed_message = parse_tool_args_if_needed(original_message) assert parsed_message == original_message def test_parse_json_if_needed(self): args = "abc" parsed_args = parse_json_if_needed(args) assert parsed_args == "abc" args = '{"a": 3}' parsed_args = parse_json_if_needed(args) assert parsed_args == {"a": 3} args = "3" parsed_args = parse_json_if_needed(args) assert parsed_args == 3 args = 3 parsed_args = parse_json_if_needed(args) assert parsed_args == 3 class TestHfApiModel: def test_call_with_custom_role_conversions(self): custom_role_conversions = {MessageRole.USER: MessageRole.SYSTEM} model = HfApiModel(model_id="test-model", custom_role_conversions=custom_role_conversions) model.client = MagicMock() messages = [{"role": "user", "content": "Test message"}] _ = model(messages) # Verify that the role conversion was applied assert model.client.chat_completion.call_args.kwargs["messages"][0]["role"] == "system", ( "role conversion should be applied" ) @require_run_all def test_get_hfapi_message_no_tool(self): model = HfApiModel(model="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10) messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}] model(messages, stop_sequences=["great"]) @require_run_all def test_get_hfapi_message_no_tool_external_provider(self): model = HfApiModel(model="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10) messages = [{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}] model(messages, stop_sequences=["great"]) class TestLiteLLMModel: @pytest.mark.parametrize( "model_id, error_flag", [ ("groq/llama-3.3-70b", "Missing API Key"), ("cerebras/llama-3.3-70b", "The api_key client option must be set"), ("mistral/mistral-tiny", "The api_key client option must be set"), ], ) def test_call_different_providers_without_key(self, model_id, error_flag): model = LiteLLMModel(model_id=model_id) messages = [{"role": "user", "content": [{"type": "text", "text": "Test message"}]}] with pytest.raises(Exception) as e: # This should raise 401 error because of missing API key, not fail for any "bad format" reason model(messages) assert error_flag in str(e) def test_passing_flatten_messages(self): model = LiteLLMModel(model_id="groq/llama-3.3-70b", flatten_messages_as_text=False) assert not model.flatten_messages_as_text model = LiteLLMModel(model_id="fal/llama-3.3-70b", flatten_messages_as_text=True) assert model.flatten_messages_as_text class TestOpenAIServerModel: def test_client_kwargs_passed_correctly(self): model_id = "gpt-3.5-turbo" api_base = "https://api.openai.com/v1" api_key = "test_api_key" organization = "test_org" project = "test_project" client_kwargs = {"max_retries": 5} with patch("openai.OpenAI") as MockOpenAI: _ = OpenAIServerModel( model_id=model_id, api_base=api_base, api_key=api_key, organization=organization, project=project, client_kwargs=client_kwargs, ) MockOpenAI.assert_called_once_with( base_url=api_base, api_key=api_key, organization=organization, project=project, max_retries=5 ) def test_get_clean_message_list_basic(): messages = [ {"role": "user", "content": [{"type": "text", "text": "Hello!"}]}, {"role": "assistant", "content": [{"type": "text", "text": "Hi there!"}]}, ] result = get_clean_message_list(messages) assert len(result) == 2 assert result[0]["role"] == "user" assert result[0]["content"][0]["text"] == "Hello!" assert result[1]["role"] == "assistant" assert result[1]["content"][0]["text"] == "Hi there!" def test_get_clean_message_list_role_conversions(): messages = [ {"role": "tool-call", "content": [{"type": "text", "text": "Calling tool..."}]}, {"role": "tool-response", "content": [{"type": "text", "text": "Tool response"}]}, ] result = get_clean_message_list(messages, role_conversions={"tool-call": "assistant", "tool-response": "user"}) assert len(result) == 2 assert result[0]["role"] == "assistant" assert result[0]["content"][0]["text"] == "Calling tool..." assert result[1]["role"] == "user" assert result[1]["content"][0]["text"] == "Tool response" @pytest.mark.parametrize( "convert_images_to_image_urls, expected_clean_message", [ ( False, { "role": "user", "content": [ {"type": "image", "image": "encoded_image"}, {"type": "image", "image": "second_encoded_image"}, ], }, ), ( True, { "role": "user", "content": [ {"type": "image_url", "image_url": {"url": "_image"}}, {"type": "image_url", "image_url": {"url": "_encoded_image"}}, ], }, ), ], ) def test_get_clean_message_list_image_encoding(convert_images_to_image_urls, expected_clean_message): messages = [ { "role": "user", "content": [{"type": "image", "image": b"image_data"}, {"type": "image", "image": b"second_image_data"}], } ] with patch("smolagents.models.encode_image_base64") as mock_encode: mock_encode.side_effect = ["encoded_image", "second_encoded_image"] result = get_clean_message_list(messages, convert_images_to_image_urls=convert_images_to_image_urls) mock_encode.assert_any_call(b"image_data") mock_encode.assert_any_call(b"second_image_data") assert len(result) == 1 assert result[0] == expected_clean_message def test_get_clean_message_list_flatten_messages_as_text(): messages = [ {"role": "user", "content": [{"type": "text", "text": "Hello!"}]}, {"role": "user", "content": [{"type": "text", "text": "How are you?"}]}, ] result = get_clean_message_list(messages, flatten_messages_as_text=True) assert len(result) == 1 assert result[0]["role"] == "user" assert result[0]["content"] == "Hello!How are you?"