File size: 51,428 Bytes
d48d4f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
{
"cells": [
{
"cell_type": "markdown",
"id": "7a095b1d",
"metadata": {},
"source": [
"# Python Tutorial (Beginners)"
]
},
{
"cell_type": "markdown",
"id": "929f009f",
"metadata": {},
"source": [
"In this tutorial some basic concepts like variables, loops, conditional statements, and functions will be discussed. we will start with variables:"
]
},
{
"cell_type": "markdown",
"id": "2da4d02a",
"metadata": {},
"source": [
"## Variables"
]
},
{
"cell_type": "markdown",
"id": "3fd5c8a3",
"metadata": {},
"source": [
"In python, we have 4 kinds of variables: numerical variables, strings, boolean, and complex numbers variables."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a122a867",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"24 <class 'int'>\n",
"Ali <class 'str'>\n",
"True <class 'bool'>\n"
]
}
],
"source": [
"age = 24\n",
"name = \"Ali\"\n",
"is_student = True\n",
"\n",
"print(age,type(age))\n",
"print(name,type(name))\n",
"print(is_student,type(is_student))"
]
},
{
"cell_type": "markdown",
"id": "5a958bac",
"metadata": {},
"source": [
"We can cast the variable types to each others, meaning that converting the type of the variables using functions below."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "3dc9be28",
"metadata": {},
"outputs": [],
"source": [
"#Casting\n",
"x = str(3) # x will be '3'\n",
"y = int(3) # y will be 3\n",
"z = float(3) # z will be 3.0\n",
"n = bool(3) # n will be True"
]
},
{
"cell_type": "markdown",
"id": "6acf69aa",
"metadata": {},
"source": [
"## Input data"
]
},
{
"cell_type": "markdown",
"id": "fc2f5cc3",
"metadata": {},
"source": [
"by just one line of code, you can get the input data from the keyboard. Just remember that the type of this data will be string..."
]
},
{
"cell_type": "code",
"execution_count": 81,
"id": "f4f0441e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"what's your name? Ali\n",
"Your name is Ali\n"
]
}
],
"source": [
"name=input(\"what's your name? \")\n",
"print(\"Your name is \"+name)"
]
},
{
"cell_type": "markdown",
"id": "bf245272",
"metadata": {},
"source": [
"## Strings"
]
},
{
"cell_type": "markdown",
"id": "7caee28a",
"metadata": {},
"source": [
"Strings in python are surrounded by either single quotation marks, or double quotation marks.\n",
"\n",
"'hello' is the same as \"hello\"."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "157b0f7d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2\n",
"TODAY IS A GREAT DAY!\n",
"3\n",
"Today is a greaaaaaaaaat day!\n",
"True\n"
]
}
],
"source": [
"context='Today is a great day!'\n",
"print(context.count('d'))\n",
"print(context.upper())\n",
"print(context.find('a'))\n",
"print(context.replace('great','greaaaaaaaaat'))\n",
"print('great' in context)"
]
},
{
"cell_type": "markdown",
"id": "9773b46f",
"metadata": {},
"source": [
"## Math operators"
]
},
{
"cell_type": "markdown",
"id": "952d3451",
"metadata": {},
"source": [
"Arithmetic or math operators are used with numeric values to perform common mathematical operations:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "40b2ddef",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.6666666666666667\n",
"1\n",
"4\n",
"8\n"
]
}
],
"source": [
"#we have +, -, /, *, //, %, **\n",
"\n",
"print(10/6) # Division\n",
"print(10//6) # Floor division\n",
"print(10%6) # Modulus\n",
"print(2**3) # Exponentiation"
]
},
{
"cell_type": "markdown",
"id": "fceb3dc6",
"metadata": {},
"source": [
"## Comparison operators"
]
},
{
"cell_type": "markdown",
"id": "1df26526",
"metadata": {},
"source": [
"Comparison operators are used to compare two values. The output is a boolean variable.\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "48551023",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"False\n"
]
}
],
"source": [
"# <, >, ==, !=, >=, <=\n",
"\n",
"print(1>100)"
]
},
{
"cell_type": "markdown",
"id": "ee87b217",
"metadata": {},
"source": [
"## Logical operators"
]
},
{
"cell_type": "markdown",
"id": "6a82c266",
"metadata": {},
"source": [
"Logical operators are used to combine conditional statements:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "c34d2249",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"False\n"
]
}
],
"source": [
"# and: Returns True if both statements are true\n",
"# or: Returns True if one of the statements is true\n",
"# not: Reverse the result, returns False if the result is true\n",
"\n",
"print(1>0 and 1>2)"
]
},
{
"cell_type": "markdown",
"id": "21ba4836",
"metadata": {},
"source": [
"## Conditional statement"
]
},
{
"cell_type": "markdown",
"id": "362ae8c6",
"metadata": {},
"source": [
"Python relies on indentation (whitespace at the beginning of a line) to define scope in the code. Other programming languages often use curly-brackets for this purpose."
]
},
{
"cell_type": "code",
"execution_count": 84,
"id": "651af70e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"enter your score: 20\n",
"Your scaled score is: 4\n"
]
}
],
"source": [
"# Writing lines of code that convert your score to american scale\n",
"score=input('enter your score: ')\n",
"score=float(score)\n",
"\n",
"if score >= 16:\n",
" scaled=4\n",
"elif score <= 15 and score >= 14:\n",
" scaled=3\n",
"elif score <= 13 and score >= 12:\n",
" scaled=2\n",
"elif score <= 11 and score >= 10:\n",
" scaled=1\n",
"else:\n",
" scaled=0\n",
"\n",
"# Using format string to include variables in the string. \n",
"print(\"Your scaled score is: {}\".format(scaled))\n",
"#print(f\"Your scaled score is: {scaled}\")"
]
},
{
"cell_type": "markdown",
"id": "ace97b5a",
"metadata": {},
"source": [
"The format() method formats the specified value(s) and insert them inside the string's placeholder.\n",
"The placeholder is defined using curly brackets: {}"
]
},
{
"cell_type": "markdown",
"id": "d92becba",
"metadata": {},
"source": [
"## while loop"
]
},
{
"cell_type": "markdown",
"id": "bbd37206",
"metadata": {},
"source": [
"Python has two primitive loop commands:\n",
"\n",
"--> while loops\n",
"\n",
"--> for loops\n",
"\n",
"With the while loop we can execute a set of statements as long as a condition is true. The while loop requires relevant variables to be ready, in this example we need to define an indexing variable, i, which we set to 1.\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 85,
"id": "eb99d022",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"2\n",
"3\n",
"4\n",
"5\n",
"i is no longer less than 6\n"
]
}
],
"source": [
"i = 1\n",
"while i < 6:\n",
" print(i)\n",
" i += 1\n",
"else:\n",
" print(\"i is no longer less than 6\")"
]
},
{
"cell_type": "markdown",
"id": "d47e1d64",
"metadata": {},
"source": [
"Note: With the \"break\" statement we can stop the loop even if the while condition is true.\n",
"\n",
"Note: With the \"continue\" statement we can stop the current iteration, and continue with the next.\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e9e87ff6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"Can I stop now??!no\n",
"2\n",
"Can I stop now??!yeS\n"
]
}
],
"source": [
"i = 1\n",
"while i < 100:\n",
" print(i)\n",
" i += 1\n",
" input_=input('Can I stop now??!')\n",
" input_=input_.lower()\n",
" if input_=='yes':\n",
" break"
]
},
{
"cell_type": "markdown",
"id": "960ea4eb",
"metadata": {},
"source": [
"## for loop"
]
},
{
"cell_type": "markdown",
"id": "d90ddfa2",
"metadata": {},
"source": [
"A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set, or a string).\n",
"\n",
"This is less like the for keyword in other programming languages, and works more like an iterator method as found in other object-orientated programming languages.\n",
"\n",
"With the for loop we can execute a set of statements, once for each item in a list, tuple, set etc.\n",
"\n",
"Note: \"break\" and \"continue\" works here as before."
]
},
{
"cell_type": "code",
"execution_count": 86,
"id": "cc042b24",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"apple\n",
"0\n",
"banana\n",
"1\n",
"cherry\n",
"2\n"
]
}
],
"source": [
"fruits = [\"apple\", \"banana\", \"cherry\"]\n",
"for i, x in enumerate(fruits):\n",
" print(x)\n",
" print(i)"
]
},
{
"cell_type": "markdown",
"id": "38d6ca50",
"metadata": {},
"source": [
"To loop through a set of code a specified number of times, we can use the range() function,\n",
"The range() function returns a sequence of numbers, starting from 0 by default, and increments by 1 (by default), and ends at a specified number."
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "3cc097ba",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"2\n",
"3\n",
"4\n",
"5\n",
"Finally finished!\n"
]
}
],
"source": [
"for x in range(100):\n",
" print(x)\n",
"else:\n",
" print(\"Finally finished!\")"
]
},
{
"cell_type": "markdown",
"id": "b6144cba",
"metadata": {},
"source": [
"The range() function defaults to increment the sequence by 1, however it is possible to specify the increment value by adding a third parameter: range(2, 30, 3)"
]
},
{
"cell_type": "markdown",
"id": "8b4b5e70",
"metadata": {},
"source": [
"## Lists"
]
},
{
"cell_type": "markdown",
"id": "8f0dff88",
"metadata": {},
"source": [
"Lists are used to store multiple items in a single variable. Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set, and Dictionary, all with different qualities and usage. We can shortly summerize their properties below:\n",
"\n",
"List is a collection which is ordered and changeable. Allows duplicate members.\n",
"\n",
"Tuple is a collection which is ordered and unchangeable. Allows duplicate members.\n",
"\n",
"Set is a collection which is unordered, unchangeable*, and unindexed. No duplicate members.\n",
"\n",
"Dictionary is a collection which is ordered** and changeable. No duplicate members."
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "9428f711",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5\n",
"['apple', 'banana', 'cherry', 5, True]\n",
"['apple', 'banana']\n",
"['apple', 'Ali', 'banana', 'cherry', 5, True, 6]\n",
"['Ali', 'banana', 'cherry', 5, True, 6]\n",
"True\n"
]
}
],
"source": [
"thislist = [\"apple\", \"banana\", \"cherry\", 5 , True]\n",
"print(len(thislist)) # returns the length of the list\n",
"print(thislist)\n",
"print(thislist[0:2]) # returns the defined elements of the list\n",
"\n",
"# Methods\n",
"thislist.append('6') # insert the new element at the end of the list\n",
"thislist.insert(1,'Ali') # insert the element at the desired index (here 1)\n",
"print(thislist)\n",
"thislist.pop(0) # deletes the defined element of the list\n",
"print(thislist)\n",
"\n",
"print(5 in thislist)"
]
},
{
"cell_type": "markdown",
"id": "37bdbece",
"metadata": {},
"source": [
"#### IMPORTANT Note: keep in mind that in python, the indices start from 0 (unlike MATLAB that start from 1)"
]
},
{
"cell_type": "markdown",
"id": "8772402b",
"metadata": {},
"source": [
"## tuples"
]
},
{
"cell_type": "markdown",
"id": "5c65ebc4",
"metadata": {},
"source": [
"Tuples are used to store multiple items in a single variable.\n",
"\n",
"A tuple is a collection which is ordered and unchangeable.\n",
"\n",
"Tuples are written with round brackets."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8e9f366b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3\n",
"('abc', 34, True, 40, 'NOT')\n"
]
}
],
"source": [
"thistuple = (\"apple\", \"banana\", \"cherry\")\n",
"print(len(thistuple))\n",
"tuple1 = (\"abc\", 34, True, 40, \"NOT\")\n",
"print(tuple1)"
]
},
{
"cell_type": "markdown",
"id": "f6a41e81",
"metadata": {},
"source": [
"## Sets"
]
},
{
"cell_type": "markdown",
"id": "7dbbba2b",
"metadata": {},
"source": [
"A set is a collection which is unordered, unchangeable*, and unindexed.\n",
"\n",
"* Note: Set items are unchangeable, but you can remove items and add new items.\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "269d7988",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{True, 2, 'cherry', 'apple', 'banana'}\n"
]
}
],
"source": [
"new_set = {\"apple\", \"banana\", \"cherry\", True, 1, 2, 2}\n",
"print(new_set)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "e90b39d3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{True, 2, 'cherry', 'banana'}\n"
]
}
],
"source": [
"new_set.remove('apple') # we cannot remove by index, because index has no meaning in sets!!\n",
"print(new_set)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "f939ce8c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{True, 2, 'cherry', 'Hi', 'banana'}\n"
]
}
],
"source": [
"new_set.add('Hi') # we cannot remove by index, because index has no meaning in sets!!\n",
"print(new_set)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"id": "049b3aa4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Hi', 'cherry']\n",
"*******\n",
"True\n",
"*******\n",
"True\n",
"2\n",
"cherry\n",
"Hi\n",
"banana\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\aligh\\AppData\\Local\\Temp/ipykernel_11788/3704487697.py:3: DeprecationWarning: Sampling from a set deprecated\n",
"since Python 3.9 and will be removed in a subsequent version.\n",
" print(random.sample(new_set, 2))\n"
]
}
],
"source": [
"# sample from the set:\n",
"import random\n",
"print(random.sample(new_set, 2))\n",
"\n",
"print('*******')\n",
"# another way: by converting set to list\n",
"print(list(new_set)[0])\n",
"\n",
"print('*******')\n",
"# another way: by iterating over a loop\n",
"for i in new_set:\n",
" print(i)"
]
},
{
"cell_type": "markdown",
"id": "286a5c81",
"metadata": {},
"source": [
"## Dictionary"
]
},
{
"cell_type": "markdown",
"id": "c51ed29b",
"metadata": {},
"source": [
"Dictionaries are written with curly brackets, and have keys and values. Dictionary items are presented in key:value pairs, and can be referred to by using the key name. in this example, the keys are 'brand', 'model', and 'year. we cannot have several same keys (like year here), and the dictionary will only keep one of them."
]
},
{
"cell_type": "code",
"execution_count": 70,
"id": "364bc79f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'brand': [], 'model': 'Mustang', 'year': 2020}\n"
]
}
],
"source": [
"thisdict = {\n",
" \"brand\": [],\n",
" \"model\": \"Mustang\",\n",
" \"year\": 1964,\n",
" \"year\": 2020\n",
"}\n",
"print(thisdict)"
]
},
{
"cell_type": "code",
"execution_count": 71,
"id": "72014022",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'brand': ['Ford'], 'model': 'Mustang', 'year': 2020}\n"
]
}
],
"source": [
"# adding an element to the 'brand' key\n",
"thisdict['brand'].append('Ford')\n",
"print(thisdict)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "bf091f0c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['brand', 'model', 'year'])"
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# keys of the dictionary\n",
"thisdict.keys()"
]
},
{
"cell_type": "markdown",
"id": "7786ced7",
"metadata": {},
"source": [
"## Functions"
]
},
{
"cell_type": "markdown",
"id": "6a9e1e91",
"metadata": {},
"source": [
"A function is a block of code which only runs when it is called.\n",
"You can pass data, known as parameters, into a function.\n",
"A function can return data as a result.\n",
"\n",
"In Python a function is defined using the def keyword:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 73,
"id": "52c2e95f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"15\n",
"25\n",
"45\n"
]
}
],
"source": [
"def my_function(x):\n",
" result= 5 * x\n",
" return result\n",
"\n",
"print(my_function(3))\n",
"print(my_function(5))\n",
"print(my_function(9))"
]
},
{
"cell_type": "markdown",
"id": "93a11d54",
"metadata": {},
"source": [
"## Plotting"
]
},
{
"cell_type": "markdown",
"id": "307d4912",
"metadata": {},
"source": [
"matplotlib is a strong library for plotting in python. Below is a brief representation of this library, but you can learn more about this on https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html and search for your intended plot."
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "49b5121d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgu0lEQVR4nO3dd3xUZd7+8c9NTUIvAUIJvRNqAAHXBhaEBYH1t7p218XtbhOCYsWCrrvqs7bF7lp2NQFEUcSCHQugTEJI6L0k1IQUUub7+4Ps87gszcxJzszker9evBKG4ZxLSC5v7pnzPc7MEBGRyFPL7wAiIlI5KnARkQilAhcRiVAqcBGRCKUCFxGJUHWq82QtW7a0Tp06VecpRUQi3vLly/eYWfzRj1drgXfq1Illy5ZV5ylFRCKec27zsR7XFoqISIRSgYuIRCgVuIhIhFKBi4hEKBW4iEiEOmmBO+eecc7lOOcyvvNYc+fcu865tRUfm1VtTBEROdqprMCfAy446rEU4H0z6w68X/FzERGpRictcDP7GNh31MMTgecrPn8euMjbWCIi0WF/QQl3vLGKvOJSz49d2T3w1ma2E6DiY6vjPdE5N9U5t8w5tyw3N7eSpxMRiSxmxsLATs598CP+sXQzX204eh0cuiq/EtPM5gBzAJKTk3X3CBGJejl5xcycn8HizN0ktWvCP346nN4JjT0/T2ULfLdzLsHMdjrnEoAcL0OJiEQiM+O1ZduYtTCTkrIgM8b24qend6ZO7ap5w19lC3wBcBUwu+Lj654lEhGJQFv2FjJjXoDP1u1lWOfm3DelP51bNqjSc560wJ1zrwBnAS2dc9uA2zhS3K86534KbAEursqQIiLhqjxoPPf5Jh54J5vatRx3XdSPnwxLpFYtV+XnPmmBm9mlx/ml0R5nERGJKGt35zMtLcA3Ww5wds947p6URNumsdV2/modJysiEg1KyoI88dF6HvlgHQ3q1+ahHw9k4sC2OFf1q+7vUoGLiHwPgW0HmJYaIGtXPj8c0JbbftiHlg3r+5JFBS4icgqKSsp56L01PPnJBuIb1efJK5M5t09rXzOpwEVETuKLDXtJSQuwaW8hlw7rwIwLe9M4pq7fsVTgIiLHk19cyuy3s3jpyy0kNo/j5euGM7JbS79j/S8VuIjIMXyQtZub52WwO6+Y607vzB/P60lsvdp+x/oPKnARke/YV1DCnW+sYv63O+jRuiGPXTaSQYnhOTFbBS4iwpHL4N8I7OT2BavILy7ld2O688uzulGvTvje90YFLiI13q6Dxcycn857q3MY0KEp90/pT882jfyOdVIqcBGpscyMf369lXsWrqY0GGTmuN5cM6oztavhMngvqMBFpEbavLeAlLR0lm7Yy4guLZg9JYmOLap2+JTXVOAiUqOUB41nP9vIA4uzqVurFvdOTuKSoR2q/TJ4L6jARaTGyN51ZPjUyq0HGNO7FXddlESbJjF+x6o0FbiIRL2SsiCPLlnHYx+uo3FMXf526SDG90+IyFX3d6nARSSqfbv1ANNSV7Jm9yEuGtiWW3/Yl+YN6vkdyxMqcBGJSkUl5fxlcTbPfLaR1o1jeObqZM7p5e/wKa+pwEUk6ny+fg8paels2VfIZcMTSRnbi0ZhMHzKaypwEYkaecWl3PvWal75aiudWsTxz6mncVqXFn7HqjIqcBGJCu9m7mbm/HRy8w9z/Rld+N2YHmE3fMprIRW4c+4G4GeAA540s4e8CCUicqr2HDrM7QtW8WZgJ73aNOLJK5Pp376p37GqRaUL3DnXjyPlPQwoARY55xaa2VqvwomIHI+Z8fq3O7jjjVUUHC7nj+f24Pozu4b18CmvhbIC7w18YWaFAM65j4BJwP1eBBMROZ4dB4qYOT+DD7JyGJR4ZPhU99bhP3zKa6EUeAZwt3OuBVAEXAgsO/pJzrmpwFSAxMTEEE4nIjVdMGi8/NUWZr+dRXnQuHV8H64a2Slihk95rdIFbmarnXP3Ae8Ch4CVQNkxnjcHmAOQnJxslT2fiNRsG/cUkJIW4MuN+zi9W0vunZxEh+ZxfsfyVUgvYprZ08DTAM65e4BtXoQSEfm3svIgT3+6kb++u4Z6dWpx/5T+XJzcPuIvg/dCqO9CaWVmOc65RGAyMMKbWCIikLkjj+lpAdK3H+S8Pq2ZdVE/WjeO3OFTXgv1feBpFXvgpcCvzGy/B5lEpIY7XFbOIx+s4/EP19M0ri6P/mQwFya10ar7KKFuofzAqyAiIgDLN+9nelqAdTmHmDy4HbeM60OzKBk+5TVdiSkiYaGwpIw/v5PNc59vIqFxDM9eM5Sze7byO1ZYU4GLiO8+XbuHlLkBtu0v4soRHZl2QS8a1lc9nYz+hETENwcLS7n7rUxeXbaNLi0b8Or1IxjWubnfsSKGClxEfLEoYxe3vJ7BvoISfnFWV24Y3Z2YutE9fMprKnARqVa5+UeGTy1M30mfhMY8e/VQ+rVr4nesiKQCF5FqYWbMXbGdO9/MpKiknBvP78nUM7pQt3bNGT7lNRW4iFS57QeKuGluOh+tyWVIx2bcN6U/3Vo19DtWxFOBi0iVCQaNF7/czH1vZ2HAHRP6csVpHalVQ4dPeU0FLiJVYn3uIVLSAny9aT8/6N6SeyZp+JTXVOAi4qnS8iBPfrKBh95bS2zd2jxw8QCmDG6ny+CrgApcRDyTsf0g09MCrNqRx9h+bbhjYl9aNdLwqaqiAheRkBWXlvO3D9byxEcbaBZXj8cvG8zYpAS/Y0U9FbiIhGTZpn1MSwuwIbeAHw1pz8xxvWkap+FT1UEFLiKVcuhwGX9elMULX2ymbZNYXrh2GGf0iPc7Vo2iAheR7+2jNbncNDedHQeLuGpEJ248vycNNHyq2ulPXERO2YHCEma9uZq0FdvoGt+A164fQXInDZ/yiwpcRE7J2+k7ueX1VewvLOHXZ3fj1+d00/Apn6nAReSEcvKKufX1VSxatYu+bRvz/LVD6dtWw6fCgQpcRI7JzEhdvo1Zb2ZSXBZk+gW9+NkPOlNHw6fChgpcRP7L1n2F3DQvnU/W7mFYp+bMnpJEl3gNnwo3IRW4c+73wHWAAenANWZW7EUwEal+5UHjhaWb+PM72Thg1sS+XDZcw6fCVaUL3DnXDvgt0MfMipxzrwKXAM95lE1EqtG6nHymp6WzfPN+zuwRzz2Tk2jXNNbvWHICoW6h1AFinXOlQBywI/RIIlKdSsuD/P2j9fzP++uIq1+bv/6/AUwapOFTkaDSBW5m251zDwBbgCJgsZktPvp5zrmpwFSAxMTEyp5ORKpAxvaD3JgaYPXOPMb1T+D2H/YlvlF9v2PJKar0y8nOuWbARKAz0BZo4Jy7/OjnmdkcM0s2s+T4eF1mKxIOikvLmf12FhMf/Yy9hw7z9yuG8OhPBqu8I0woWyhjgI1mlgvgnJsLjARe9CKYiFSNLzfsJWVuOhv3FPDj5A7cNK43TWLr+h1LKiGUAt8CnOaci+PIFspoYJknqUTEc/nFpdy/KJt/fLGZDs1jeem64Yzq1tLvWBKCUPbAv3TOpQIrgDLgG2COV8FExDtLsnO4eW46O/OKuXZUZ/50fg/i6ukykEgX0t+gmd0G3OZRFhHx2P6CEma9mcncb7bTvVVD0n4xksGJzfyOJR7R/4JFopCZsTB9J7e9voqDRaX89pxu/OqcbtSvo+FT0UQFLhJlducVM3N+Bu9m7qZ/+ya8eN1weic09juWVAEVuEiUMDNeXbaVuxaupqQsyE0X9uLaURo+Fc1U4CJRYMveQlLmBvh8/V6Gd27OfVP606llA79jSRVTgYtEsPKg8dznm3jgnWxq13LcPakflw5N1PCpGkIFLhKh1uzOZ1pqgG+3HuCcXq24e1I/Eppo+FRNogIXiTAlZUEe/3A9jyxZS8P6dXj4koFMGNBWw6dqIBW4SARZufUA09MCZO3KZ8KAttz2wz60aKj5JTWVClwkAhSVlPPge2t46pMNtGoUw1NXJjOmT2u/Y4nPVOAiYW7p+r3MmBtg095CLh2WyIwLe9E4RsOnRAUuErbyikuZ/XYWL3+5hY4t4nj5Z8MZ2VXDp+T/qMBFwtD7q3dz87wMcvKL+dkPOvOHc3sSW0+Xwct/UoGLhJG9hw5zxxuZLFi5g56tG/HEFUMY2KGp37EkTKnARcKAmbFg5Q7ueCOT/OJSfj+mB784qyv16ugyeDk+FbiIz3YeLGLmvAzez8phQIem3D+lPz3bNPI7lkQAFbiIT4JB459fb+Xet1ZTGgwyc1xvrhnVmdq6DF5OkQpcxAeb9hSQMjfAFxv2MaJLC2ZPSaJjCw2fku9HBS5SjcrKgzz72Sb+8m42dWvVYvbkJH48tIMug5dKUYGLVJOsXXlMTw2wcttBxvRuzV0X9aNNkxi/Y0kEq3SBO+d6Av/6zkNdgFvN7KFQQ4lEk8Nl5Ty6ZD2PLVlHk9i6/O3SQYzvn6BVt4QslLvSZwMDAZxztYHtwDxvYolEh2+27Gd6WoA1uw8xaVA7bhnfh+YN6vkdS6KEV1soo4H1ZrbZo+OJRLTCkjL+sngNz3y2kTaNY3jm6mTO6aXhU+Itrwr8EuCVY/2Cc24qMBUgMTHRo9OJhK/P1+0hZW46W/YVcvlpiUy/oBeNNHxKqoAzs9AO4Fw9YAfQ18x2n+i5ycnJtmzZspDOJxKuDhaVcu9bq/nn11vp1CKO2VP6c1qXFn7HkijgnFtuZslHP+7FCnwssOJk5S0SzRav2sXM+RnsOXSY68/swu/H9CCmroZPSdXyosAv5TjbJyLRbs+hw9y+YBVvBnbSq00jnroqmf7tm/odS2qIkArcORcHnAtc700ckchgZsz/djt3vJFJ4eFy/nhuD35+Vlfq1tbwKak+IRW4mRUC2uSTGmXHgSJunpfOkuxcBiUeGT7VvbWGT0n105WYIqcoGDRe+moL972dRXnQuHV8H64a2UnDp8Q3KnCRU7Ah9xApael8tWkfp3dryb2Tk+jQPM7vWFLDqcBFTqCsPMhTn27kwXfXUL9OLe7/UX8uHtJel8FLWFCBixxH5o48pqWtJGN7Huf3bc2sif1o1VjDpyR8qMBFjnK4rJxHPljH4x+up2lcXR67bDBj+7XRqlvCjgpc5DuWbz4yfGpdziEmD27HLeP60EzDpyRMqcBFgILDZTywOJvnPt9E2yaxPHfNUM7q2crvWCInpAKXGu+TtbnMmJvOtv1FXDWiIzde0IuG9fWtIeFPX6VSYx0sLOWuhZm8tnwbXeIb8NrPRzC0U3O/Y4mcMhW41EiLMnZxy+sZ7Cso4ZdndeW3o7tr+JREHBW41Cg5+cXcvmAVb6Xvok9CY569eij92jXxO5ZIpajApUYwM9JWbGfWm5kUlZZz4/k9mXpGFw2fkoimApeot21/ITfNy+DjNbkM6diM+6b0p1urhn7HEgmZClyiVjBo/OOLzdy3KAuAOyb05YrTOlJLw6ckSqjAJSqtzz3E9NQAyzbv54we8dwzqR/tm2n4lEQXFbhEldLyIHM+3sDD768ltm5tHrh4AFMGt9Nl8BKVVOASNTK2H2R6WoBVO/K4MKkNt0/oS6tGGj4l0UsFLhGvuLSc/3l/LX//eAPN4urxxOWDuaBfgt+xRKqcClwi2teb9jE9NcCGPQVcPKQ9M8f1oUlcXb9jiVSLUG9q3BR4CugHGHCtmS31IJfICR06XMb9i7J4Yelm2jeL5YVrh3FGj3i/Y4lUq1BX4A8Di8zsR865eoBe5pcq99GaXG6am86Og0VcPbITN57fkwYaPiU1UKW/6p1zjYEzgKsBzKwEKPEmlsh/O1BYwp1vZjJ3xXa6xjcg9ecjGNJRw6ek5gpl2dIFyAWedc4NAJYDN5hZwXef5JybCkwFSExMDOF0UlOZGW9n7OLW1zM4UFjKr8/uxq/P6abhU1LjhTIIog4wGHjczAYBBUDK0U8yszlmlmxmyfHx2qOU7ycnr5ifv7icX760gjZNYnj916P40/k9Vd4ihLYC3wZsM7MvK36eyjEKXKQyzIzXlm/jrjczOVwWJGVsL647vTN1NHxK5H9VusDNbJdzbqtzrqeZZQOjgUzvoklNtXVfITPmpvPpuj0M69Sc2VOS6BKv4VMiRwv1pfvfAC9VvANlA3BN6JGkpioPGi8s3cT9i7Kp5WDWRf24bFiihk+JHEdIBW5m3wLJ3kSRmmxdTj7TUgOs2HKAs3rGc/ekJNo1jfU7lkhY05tnxVel5UGe+HA9f/tgHXH1a/Pgjwdw0UANnxI5FSpw8U36toPcmLqSrF35jOufwB0T+tKyYX2/Y4lEDBW4VLvi0nIefG8NT368gZYN6/P3K4Zwft82fscSiTgqcKlWX27YS8rcdDbuKeCSoR2YcWFvmsRq+JRIZajApVrkF5dy36IsXvxiCx2ax/LSdcMZ1a2l37FEIpoKXKrckqwcbpqXzq68Yn56emf+eF4P4urpS08kVPoukiqzr6CEO99Yxfxvd9C9VUPSfjGSwYnN/I4lEjVU4OI5M+PNwE5uX7CKg0Wl/HZ0d351dlfq19H8EhEvqcDFU7vzirl5Xgbvrd5N//ZNePG64fROaOx3LJGopAIXT5gZ//p6K3e/tZqSsiA3X9iba0Z10vApkSqkApeQbdlbSMrcAJ+v38vwzs25b0p/OrVs4HcskainApdKKw8az362kQcWZ1OnVi3umZTEJUM7aPiUSDVRgUulZO/KZ1pagJVbD3BOr1bcPakfCU00fEqkOqnA5XspKQvy2IfreHTJOhrF1OXhSwYyYUBbDZ8S8YEKXE7Zyq0HmJYaIHt3PhMHtuXW8X1ooeFTIr5RgctJFZWU89d3s3n60420ahTDU1cmM6ZPa79jidR4KnA5oaXr95IyN8DmvYX8ZHgiKWN70ThGw6dEwoEKXI4pr7iUe9/K4pWvttCxRRwv/2w4I7tq+JRIOFGBy395L3M3N89PJzf/MFPP6MLvx/Qgtp4ugxcJNyEVuHNuE5APlANlZqb7Y0awvYcOc8cbmSxYuYNebRox54pkBnRo6ncsETkOL1bgZ5vZHg+OIz4xMxas3MHtC1Zx6HAZvx/Tg1+c1ZV6dXQZvEg40xZKDbfzYBEz52XwflYOAzs05f4f9adH60Z+xxKRUxBqgRuw2DlnwN/NbM7RT3DOTQWmAiQmJoZ4OvFKMGi88vUW7n0ri7JgkJnjenPNqM7U1mXwIhEj1AIfZWY7nHOtgHedc1lm9vF3n1BR6nMAkpOTLcTziQc27ikgJS3Alxv3MbJrC2ZP7k9iizi/Y4nI9xRSgZvZjoqPOc65ecAw4OMT/y7xS1l5kGc+28hfFq+hXu1azJ6cxI+HdtBl8CIRqtIF7pxrANQys/yKz88D7vQsmXhq9c48pqcFCGw7yJjerbnron60aRLjdywRCUEoK/DWwLyK1Vsd4GUzW+RJKvHM4bJyHl2ynseWrKNJbF0e+ckgxiUlaNUtEgUqXeBmtgEY4GEW8diKLfuZnhpgbc4hJg1qx63j+9CsQT2/Y4mIR/Q2wihUWFLGXxav4ZnPNtKmcQzPXj2Us3u18juWiHhMBR5lPlu3h5S5AbbuK+Ly0xKZfkEvGmn4lEhUUoFHiYNFpdyzcDX/WraVzi0b8K+ppzG8Swu/Y4lIFVKBR4HFq3Yxc34GewtK+PmZXfndmO7E1NXwKZFopwKPYLn5h7n9jVUsDOykd0Jjnr5qKEntm/gdS0SqiQo8ApkZ877Zzp1vZlJ4uJw/ndeD68/sSt3aGj4lUpOowCPM9gNF3DwvnQ+zcxmceGT4VLdWGj4lUhOpwCNEMGi89OVmZr+dRdDgth/24coRnTR8SqQGU4FHgA25h0hJS+erTfs4vVtL7p2cRIfmGj4lUtOpwMNYWXmQJz/ZyIPvrSGmTi3u/1F/Lh7SXpfBiwigAg9bmTvymJa2kozteZzftzWzJvajVWMNnxKR/6MCDzPFpeU88sE6nvhoPU3j6vH4ZYMZm5TgdywRCUMq8DCyfPM+pqUGWJ9bwJTB7bllfG+axmn4lIgcmwo8DBQcLuPP72Tz/NJNtG0Sy/PXDuPMHvF+xxKRMKcC99nHa3KZMTedHQeLuPK0jtx4QS8a1tdfi4icnJrCJwcLS5m1MJPU5dvoEt+AV68fwdBOzf2OJSIRRAXug0UZO7nl9VXsKyjhl2d15bejNXxKRL4/FXg1yskv5rbXV/F2xi76JDTm2auH0q+dhk+JSOWowKuBmZG6fBt3LVxNUWk5N57fk6lndNHwKREJiQq8im3dV8hN89L5ZO0ekjs2Y/aU/nRr1dDvWCISBUIucOdcbWAZsN3MxoceKToEg8YLSzdx/zvZOODOiX25fHhHamn4lIh4xIsV+A3AaqCxB8eKCutyDpGSFmDZ5v2c0SOeeyb1o30zDZ8SEW+FVODOufbAOOBu4A+eJIpgpeVB5ny8gYffW0tsvdr85eIBTB7cTsOnRKRKhLoCfwiYBhz3jgLOuanAVIDExMQQTxe+MrYfZFpqgMydeVyY1IY7JvQjvlF9v2OJSBSrdIE758YDOWa23Dl31vGeZ2ZzgDkAycnJVtnzhavi0nIefn8tcz7eQPMG9Xji8sFc0E/Dp0Sk6oWyAh8FTHDOXQjEAI2dcy+a2eXeRAt/X2/ax/TUABv2FHDxkPbMHNeHJnF1/Y4lIjVEpQvczGYAMwAqVuB/qinlfehwGfcvyuKFpZtp3yyWf/x0GD/oruFTIlK99D7w7+nD7BxunpfBjoNFXDOqE386rycNNHxKRHzgSfOY2YfAh14cK1ztLyhh1sJM5q7YTrdWDUn9+UiGdGzmdywRqcG0dDwJM+Ot9F3ctiCDA4Wl/Oacbvz6nG7Ur6PhUyLiLxX4CeTkFTNzfgaLM3eT1K4JL1w7nD5tdb2SiIQHFfgxmBmvLdvGrIWZlJQFSRnbi+tO70wdDZ8SkTCiAj/K1n2FzJibzqfr9jCsc3NmT06iS7yGT4lI+FGBVygPGs9/vok/v5NN7VqOuy7qx0+GJWr4lIiELRU4sHZ3PtPSAnyz5QBn9YznnklJtG0a63csEZETqtEFXlIW5ImP1vPIB+toUL82D/14IBMHttXwKRGJCDW2wAPbDjAtNUDWrnzG90/g9gl9adlQw6dEJHLUuAIvLi3nwXfX8OQnG4hvVJ85VwzhvL5t/I4lIvK91agC/2LDXlLSAmzaW8ilwzqQMrY3TWI1fEpEIlONKPD84lJmv53FS19uIbF5HC9fN5yR3Vr6HUtEJCRRX+AfZO3m5nkZ7M4r5rrTO/OH83oQVy/q/7NFpAaI2ibbV1DCnW+sYv63O+jeqiGP/WIkgxI1fEpEokfUFbiZ8UZgJ7cvWEVeUSk3jO7OL8/uquFTIhJ1oqrAdx08MnzqvdW7GdC+Cff9bDi92mj4lIhEp6gocDPjn19v5Z6FqykNBrn5wt5ce3pnausyeBGJYhFf4Jv3FpCSls7SDXs5rUtzZk/uT6eWDfyOJSJS5SK2wMuDxrOfbeSBxdnUrVWLeyYlccnQDho+JSI1RkQWePauI8OnVm49wOherbhrUj8Smmj4lIjULJUucOdcDPAxUL/iOKlmdptXwY6lpCzIYx+u49El62gUU5eHLxnIhAEaPiUiNVMoK/DDwDlmdsg5Vxf41Dn3tpl94VG2//Dt1gNMTw2QvTufiQPbcuv4PrTQ8CkRqcEqXeBmZsChip/WrfhhXoQ62t/eX8uD762hVaMYnr4qmdG9W1fFaUREIkpIe+DOudrAcqAb8KiZfXmM50wFpgIkJiZW6jyJLeK4ZFgiKWN70ThGw6dERADckYV0iAdxrikwD/iNmWUc73nJycm2bNmykM8nIlKTOOeWm1ny0Y97cpt1MzsAfAhc4MXxRETk5Cpd4M65+IqVN865WGAMkOVRLhEROYlQ9sATgOcr9sFrAa+a2ZvexBIRkZMJ5V0oAWCQh1lEROR78GQPXEREqp8KXEQkQqnARUQilApcRCRCeXIhzymfzLlcYHMlf3tLYI+HcapaJOWNpKwQWXkjKStEVt5Iygqh5e1oZvFHP1itBR4K59yyY12JFK4iKW8kZYXIyhtJWSGy8kZSVqiavNpCERGJUCpwEZEIFUkFPsfvAN9TJOWNpKwQWXkjKStEVt5IygpVkDdi9sBFROQ/RdIKXEREvkMFLiISocK+wJ1zzzjncpxzx71RRLhwznVwzi1xzq12zq1yzt3gd6YTcc7FOOe+cs6trMh7h9+ZTsY5V9s5941zLuwnXzrnNjnn0p1z3zrnwvpOJs65ps65VOdcVsXX7wi/Mx2Pc65nxZ/pv3/kOed+53eu43HO/b7i+yvDOfdKxQ3hvTl2uO+BO+fO4Mi9N18ws35+5zkR51wCkGBmK5xzjThyu7mLzCzT52jH5JxzQIPv3pgauKGqbkztBefcH4BkoLGZjfc7z4k45zYByWYW9hebOOeeBz4xs6ecc/WAuIobtYS1inHW24HhZlbZiwSrjHOuHUe+r/qYWZFz7lXgLTN7zovjh/0K3Mw+Bvb5neNUmNlOM1tR8Xk+sBpo52+q47MjquXG1F5wzrUHxgFP+Z0lmjjnGgNnAE8DmFlJJJR3hdHA+nAs7++oA8Q65+oAccAOrw4c9gUeqZxznTgyL/2/bvQcTiq2JL4FcoB3j3Vj6jDyEDANCPqc41QZsNg5t7zi5t7hqguQCzxbsT31lHOugd+hTtElwCt+hzgeM9sOPABsAXYCB81ssVfHV4FXAedcQyAN+J2Z5fmd50TMrNzMBgLtgWHOubDcpnLOjQdyzGy531m+h1FmNhgYC/yqYjswHNUBBgOPm9kgoABI8TfSyVVs9UwAXvM7y/E455oBE4HOQFuggXPucq+OrwL3WMVechrwkpnN9TvPqYqAG1OPAiZU7Cv/EzjHOfeiv5FOzMx2VHzMAeYBw/xNdFzbgG3f+ddXKkcKPdyNBVaY2W6/g5zAGGCjmeWaWSkwFxjp1cFV4B6qeFHwaWC1mf3V7zwnE0k3pjazGWbW3sw6ceSfzR+YmWcrGa855xpUvJBNxXbEeUBYvpPKzHYBW51zPSseGg2E5QvvR7mUMN4+qbAFOM05F1fRD6M58tqYJ8K+wJ1zrwBLgZ7OuW3OuZ/6nekERgFXcGR1+O+3OF3od6gTSACWOOcCwNcc2QMP+7fnRYjWwKfOuZXAV8BCM1vkc6YT+Q3wUsXXwkDgHn/jnJhzLg44lyMr2rBV8a+aVGAFkM6RzvXskvqwfxuhiIgcW9ivwEVE5NhU4CIiEUoFLiISoVTgIiIRSgUuIhKhVOAiIhFKBS4iEqH+P0QbgQAOcSdUAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"xpoints = [1, 8]\n",
"ypoints = [3, 10]\n",
"\n",
"plt.plot(xpoints, ypoints)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 79,
"id": "659c3924",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoI0lEQVR4nO3da3iU9bku8PvJERIICZCEQ0iiCCaAEiAiag+W4Kq1tdW2HtoK7L27L7vWanfVZa+17NH2y1r2YLWfurenVUBbtfWAtVVrUaxowEwwQZCTwgwhCSFhJifIcebZH2YGIiaTOb+n+3dduTIzmcw8JG8e3nnmvd+/qCqIiMh6MowugIiI4sMGTkRkUWzgREQWxQZORGRRbOBERBaVlc4nmz17tlZWVqbzKclBGhsbu1S12Ijn5rZNqTTRtp3WBl5ZWQmXy5XOpyQHERGPUc/NbZtSaaJtmyMUIiKLYgMnIrIoNnAiIotiAycisig2cCIii5q0gYvIYyJyUkT2jrltpoi8KiKHQ5+LUlsmUWqISKaIvCsiL4auc9smy4hmD/x3AK4977Z7AGxT1UUAtoWuE1nRHQD2j7nObZssY9IGrqr/AOA97+YvAdgUurwJwA3JLYvo43Yc7sL/feNDDI36k/J4IlIG4PMAHhlzM7dtSrvfbv8QjR5fzN8X7wy8VFXbASD0uWSiO4rI7SLiEhFXZ2dnnE9HBGxtasX/e+ND5GQm7a2bBwH8O4DAmNu4bVNavXm4Ez9/+QD+3NwW8/em/E1MVX1IVWtVtba42JCUM9lEo8eHVRUzISIJP5aIfAHASVVtjPcxuG1TorrPDON7f2zGRSXTcM/nqmL+/ngbeIeIzAWA0OeTcT4OUVS6+odwpOs0LqtM2nuKVwH4ooi4ATwJYK2IPA5u25QmqoofPPcevKeH8eAtNZiSnRnzY8TbwF8AsDF0eSOArXE+DlFUXO7gfLA2SQ1cVb+vqmWqWgngVgCvqept4LZNafLs7lb89b0TuOuaxVg2f0ZcjxHNYYR/AFAP4GIROS4i3wRwH4BrROQwgGtC14lSxuX2IicrI+4NPQbctinlWrxncO8L+7C6cia+9amFcT/OpGcjVNWvTfCluriflShGLo8PNWWFyM2K/WXmZFR1O4DtocunwG2bUsgfUNz9dDMA4P6blyMzI/73dJjEJNMbGPZjb2sPViVv/k1kmIf+cQTvuL346ReXYsHMvIQeiw2cTK+ppRujAU3mG5hEhtjb2oNfv3oQn1s2B19ZOT/hx2MDJ9NzuYM5slXlMw2uhCh+gyN+3PVUE4rycvCfN16SlMNh07oiD1E8XB4fLi6djhl52UaXQhS3+146gMMn+7H5f61GUX5OUh6Te+Bkav6AYrfHx/k3Wdqbhzvxu7fd+B9XVuJTi5MX+mIDJ1M7eKIPfUOjnH+TZSWatoyEDZxMrdETnH/XVnD+Tdajqvjhc3txqj/+tGUkbOBkag1uH+YUTEFZ0VSjSyGK2XPvtuIv77UnlLaMhA2cTM3l9mJVZVFS3rEnSqcW7xncu3UfLqsswj9/Ov60ZSRs4GRard0DaOsZxGUVnH+TtYTTlgrg1zfXJJS2jISHEZJphY//rq3k/JusJZy2/NVNyxNOW0bCPXAyLZfbh/ycTFTNmW50KURRS3baMhI2cDKtBrcXKyuKkJW8FXiIUioVactI+JdBptQ7OIKDHX08fJAs5ecvB9OWv7xpedLSlpGwgZMp7fb4oAoGeMgy3jzcif9+K5i2/HQS05aRsIGTKbncPmRmCGrKC40uhWhSqUxbRsIGTqbU4PZi6bwC5OXwQCkyt1SnLSNhAyfTGR4NoPl4N+ffZAmpTltGwgZOprOvrQeDIwHOv8n0jvtSn7aMhA2cTCe8Aj1PIUtm5g8o/i0NactIOGAk02lwe1ExKw8l06cYXQrRhB76xxG8czT1actIuAdOpqKqaPT4OP8mU0tn2jISNnAylaNdp3Hq9DBqOT4hk0p32jISjlDIVMLzb76BSWYVTltuSuLalvHiHjiZisvjRVFeNhYWT0v5c4nIFBF5R0SaRWSfiPwsdPtPRaRVRJpCH9elvBiyhHDacuMVFWlLW0bCPXAyFZfbh1UVM9P1snQIwFpV7ReRbAA7ROSl0NceUNVfpaMIsoZw2nJhcT7u+Vy10eUA4B44mUhX/xCOdJ1O2/xbg/pDV7NDH5qWJydLGZu2/M2tKzA1J31py0jYwMk0jJh/i0imiDQBOAngVVXdFfrSd0Rkj4g8JiLjFiQit4uIS0RcnZ2d6SqZDGBk2jISNnAyjUaPFzlZGWn9A1FVv6rWACgDsFpElgH4LYCFAGoAtAO4f4LvfUhVa1W1trjY+HkopYbRactI2MDJNBrcPtSUFSI3K/0vT1W1G8B2ANeqakeosQcAPAxgddoLIlMwQ9oyEjZwMoWBYT/2tvakNT4vIsUiUhi6PBXAOgAHRGTumLvdCGBv2ooiU3n4zWDa8t7rlxiWtoyER6GQKTS1dGM0oOk+/nsugE0ikongzszTqvqiiGwRkRoE39B0A/hWOosic9jb2oP7/3YQ1y6dg6+uKjO6nHGxgZMpNHqCK9CvKk9fhF5V9wBYMc7t69NWBJnSR9KWXzY2bRkJGziZQoPbh8Wl0zAjL9voUog+kracaXDaMhLOwMlw/oBit8eH2kqewIqMZ7a0ZSQJNXARuSsUQd4rIn8QEZ7/k2J2qKMPfUOjPP8JGc6MactI4m7gIjIfwHcB1KrqMgCZAG5NVmHkHC53cP7NU8iSkcyatowk0RFKFoCpIpIFIA9AW+IlWcdrBzrw5mEm8BLV4PahtCAXZUVTjS6FHMysactI4m7gqtoK4FcAjiGYVutR1b+dfz+7xo0Hhv2488km/OC596DK02ckwuX2orYybSewIvqYcNqytsJ8actIEhmhFAH4EoALAMwDkC8it51/P7vGjbc2taJ3cBQt3gF8cLJ/8m+gcbV2D6CtZxCXVXD+TcYYm7Z84BbzpS0jSWSEsg7AUVXtVNURAM8CuDI5ZZmbqmJTvefsS/6/7z9pcEXWdXb+zSNQyCBmT1tGkkgDPwZgjYjkSfC1bx2A/ckpy9waPT7sb+/Fv159EZbNL8C2/R1Gl2RZLrcP+TmZqJoz3ehSyIH2tZk/bRlJIjPwXQD+BGA3gPdCj/VQkuoytU31HkyfkoUbVszD2qpS7D7mg/f0sNFlWVKD24uVFUXIymQkgdIrnLYsNHnaMpKE/mpU9V5VrVLVZaq6XlWHklWYWZ3sHcRL77XjplULkJeThXXVJQgo8PoBjlFi1Ts4goMdfTx8kAzx85cP4FBHP3751UtNnbaMhLs9MfrDOy0YDSjWX1EBAFg2bwZKpufiNTbwmO32+KAKrkBPaTc2bXn1xSVGlxM3NvAYjPgD+P07HnxqcTEumJ0PAMjIENRVl+CNQ50YHg0YXKG1uNw+ZGYIahYUGl0KOYjV0paRsIHH4G/7OtDRO4QNayo+cvvaqlL0D43inaNegyqzJpfHi6XzCpCfy3OqUXqoKn74vLXSlpGwgcdgc70bZUVT8Zmqj77k+sRFs5GblYG/82iUqA2PBtDU0s35N6XV802t+Msea6UtI2EDj9KBE73YddSL29ZUfOxA/6k5mbjqotnYdqCDqcwo7WvrweBIgPNvSpvjvjP4yfPWS1tGwgYepS31HuRmZeCW2gXjfr2uuoSpzBiEV6CvZQKT0iCctgyoWi5tGQkbeBR6B0fw3LutuH75PBRNcLhRXVUpAKYyo+XyeFExKw8lBTwDMaVeOG350y8utVzaMhI28Cg803gcZ4b92HhF5YT3mTNjCpbOYyozGqoKl9vH+TelhdXTlpGwgU8iEFBsqfegZkEhLimL/KZHXTVTmdE42nUap04Pc/5NKWeHtGUkbOCTeOvDLhzpOo2NV1ZMet9wKnP7QY5RIgnPv7kCD6XaL14+aPm0ZSRs4JPY9LYHs/JzcN0lcye9bziVuY1z8IhcHi+K8rKxsHia0aWQjb15uBOPvXUUGyyetoyEDTyCFu8ZvHagA7euXoDcrMkP+GcqMzoutw+rKops93KWzGNs2vL7Fk9bRsIGHsETu44BAL5++eTjkzCmMiPr6h/Cka7TPP83pczYtOWDt1g/bRkJG/gEBkf8eKrhGK5ZUor5hdGv1RhOZW47wKNRxtPoMc/8W0SmiMg7ItIsIvtE5Geh22eKyKsicjj02fhiKWpj05aTHXhgdWzgE3hxTzt8Z0awIcKhg+M5m8rcf5KpzHG43F7kZGWYJcY8BGCtqi4HUAPgWhFZA+AeANtUdRGAbaHrZAF2TFtGwgY+gS31biwszseVC2fF/L111SU45j3DVOY4Gtw+LC+bEdV7CqmmQeFfUnboQxFc63VT6PZNAG5If3UUK39AcbcN05aRsIGPo6mlG83He7Dhisq43mhbGzrZFVOZHzUw7Mfe1h5Tzb9FJFNEmgCcBPBqaKWpUlVtB4DQ53EPYRCR20XEJSKuzs7OtNVM43v4zSPYddSLe22WtoyEDXwcm+vdyM/JxJdXzo/r++fOmMpU5jiaj3djNKCmmH+HqapfVWsAlAFYLSLLYvjeh1S1VlVri4uLU1YjTS6ctvzs0lLcZLO0ZSRs4Oc51T+EF5vb8eWVZZg+JTvux2Eq8+PCK9CvKjfPHniYqnYD2A7gWgAdIjIXAEKf+VLKxMamLf/ry5c66vBUNvDzPOVqwbA/gA1XRH/o4HiYyvy4BrcPi0unYUZe/P8xJpOIFItIYejyVADrABwA8AKAjaG7bQSw1ZACKSp2T1tGwgY+hj+geGLnMVxx4SwsKp2e0GMxlflR/oBit8dnqvk3gLkAXheRPQAaEJyBvwjgPgDXiMhhANeErpMJ7TjcZfu0ZSRcy2qMbfs70No9gB9/IfHkVkaGYG1VCV7c047h0QByspz9f+Whjj70DY2abf69B8CKcW4/BaAu/RVRLJyStozE2V3lPJvrPZg7YwrWVZcm5fHqqpnKDAvPv3kKWUqGcNqyq3/I9mnLSNjAQz442Y8dH3ThG5eXIyszOT8WpjLPaXD7UFqQi7Ki6FOtRBMJpy3vXLfI9mnLSNjAQx7f6UF2puCWy8qT9phMZZ7TGJp/O+kIAUqNsWnLf7n6IqPLMRQbOID+oVE803gcn79kLoqn5yb1sddWMZXZ2j2A1u4BXMb1LylBTkxbRsIGDuC5d1vRNzSK9TGe9yQaddVMZZ6df5vrCBSyoEccmLaMxPENXFWxpd6NZfMLsLK8MOmPH05lvubgObjL7UN+Tiaq5iR2aCY52/ttvfiVA9OWkTi+ge884sWhjn5sWBPfeU+iUVddikaPDz6HpjJdHh9WVhQl7c1hcp7BET/ufOpdR6YtI3H8X9SWnW4U5mXjizXzUvYc4VTm6w5MZfYOjuDAiV4ePkgJCactf+HAtGUkjm7g7T0DeGVfB26uXYAp2ak7jnTZvBkodmgqc7fHB1VwBXqK29i05WccmLaMxNEN/A+7jiGgittiWDItHhkZgroqZ66V6XL7kJkhqFlQaHQpZEFMW0bm2AY+PBrA799pwWcuLkH5rNS/mx1OZTa4nZXKdHm8WDqvAPm5PGsDxUZV8SOmLSNybAN/aW87uvqHEj7rYLTCqcy/O+gc4cOjATS1dGMVj/+mOGxtasOLTFtG5NgGvrneg8pZefjUovSciH9qTiauXDjLUanMfW09GBwJ4DIe/00xOu47gx8/vxerHLK2ZbwSauAiUigifxKRAyKyX0SuSFZhqbS3tQeNHh9uW1OBjDQmueqqSx2VygyvQF/LPXCKwUfSljfX8PDTCBL9yfwGwMuqWgVgOYD9iZeUelvqPZiSnYGbVi1I6/M6LZXZ4PaiYlYeSgqmGF0KWcjYtGU63p+ysrgbuIgUAPgUgEcBQFWHQ8tSmVr3mWFsbW7FjSvmp31lGCelMlUVLreP82+KCdOWsUlkD/xCAJ0A/ltE3hWRR0Qk//w7mW3l7j+6jmNwJID1ayoNeX6npDKPdp3GqdPDnH9T1Ji2jF0iDTwLwEoAv1XVFQBOA7jn/DuZaeXuQECxZacHl1UWYcm8AkNqqKtyRirTFZp/m2kFHjK3X77CtGWsEmngxwEcV9Vdoet/QrChm9YbhzpxzHsmJWcdjNYl852RynS5vSjKy8bC4mlGl0IWsONwFx7dcRTr1zBtGYu4G7iqngDQIiIXh26qA/B+UqpKkc31bhRPz8W1S+cYVkM4lfkPm6cyw/NvvgymyYTTlhcW5+MH1zFtGYtEj0L5PwCeCK3qXQPgPxOuKEU8p05j+6FOfG11ueELDNdVl6LPxqnMU/1DONJ1muf/pkmNTVv+hmnLmCWUb1bVJgC1ySkltR7f6UGmCL5xefKWTIvXVRfNQk4olXnVRbONLifpOP+maIXTlt/7p8VMW8bBEUfIDwz78VRDCz67dA5KTXBMcl5OFq6ycSrT5fYiJysDy+bzD5Im1to9gB9vZdoyEY5o4C80t6J3cDRt5z2Jhp1TmQ1uH5aXzUBuFl8O0/j8AcW/PdWEQIBpy0TY/qemqtj0tgcXl07H6gvMM5MNpzK3HbDX0SgDw37sa+uxxPxbRBaIyOuh00DsE5E7Qrf/VERaRaQp9HGd0bXazdm05fVMWybC9g189zEf3m/vxYYrK0x1REQ4lbnNZmcnbD7ejRG/WmX+PQrgblWtBrAGwLdFZEnoaw+oak3o46/GlWg/H0lb1jJtmQjbN/BNb3swPTcLN9TMN7qUj6mrKrFdKjO8Av3KcvM3cFVtV9Xdoct9CJ7Lx3wbio0wbZlctm7gJ/sG8dLedny1tsyUCwrUVZfaLpXZ4PZhcek0FOZZK0knIpUAVgAIB9O+IyJ7ROQxERn3fyOznSbCCpi2TC5bN/An32nBiF+xfo153rwc62wq0yZzcH9AsfuYzxLz77FEZBqAZwDcqaq9AH4LYCGC2YZ2APeP931mOk2EFbz1AdOWyWbbBj7iD+D3u47hk4tm40KTxrnPpjIP2iOVeaijD32Do1aZfwMARCQbweb9hKo+CwCq2qGqflUNAHgYwGoja7SDnjMjuPtppi2TzbYN/NX3O3CidxAbDDzvSTTWVpXYJpUZnn/XVlhjD1yCA9hHAexX1V+PuX3umLvdCGBvumuzE1XFD59/L7S2ZQ3TlklkvsFwkmyud2N+4VSsrTL3S7VPLJptm1Smy+NDaUEuyoqmGl1KtK4CsB7AeyLSFLrtBwC+JiI1ABSAG8C3jCjOLsamLS8tKzS6HFuxZQM/eKIPO4948R/XViEzjUumxWNsKvMnX1hi6XflXe7g/Nsq/wZV3QFgvGJ52GCSMG2ZWrYcoWzZ6UZOVgZuuSy9S6bFK5zK/LDTuqnM1u4BtHYPcP1LOisQUNz9NNOWqWS7n2jv4Aie3d2K6y+dZ5nDlOywVmZ4/s0VeCjskR1HsPMI05apZLsG/mzjcZwZ9mPjleY8dHA8c2dMxZK51k5lNnp8yM/JRNWc6UaXQiawv70Xv3rlEP5pCdOWqWSrBq6q2LzTg+ULCi33Zsm6amunMhvcPqysKOLLZAqmLZ9swoy8bNz3FaYtU8lWf21vfXAKRzpPY6OJzjoYLSunMnsHR3DgRC9XoCcAwbTlwY4+pi3TwFYNfFO9GzPzc3DdJXMnv7PJWDmVudvjgyrn38S0ZbrZpoEf953Btv0duPWyBZiSbb2gQEaGYO3F1kxlNnp8yMwQ1CwoNLoUMhDTlulnmwb+xK5jAIBvmPS8J9Goq7ZmKrPB7cXSeQWmPGEYpc+Ptu5l2jLNbNHAB0eCS6atqy7F/ELLpAA/Zmwq0ypG/AE0tXRz/u1wW5ta8efmNtxRt8hyBxBYmS0a+F/2tMN7etj05z2ZjBXXytzX1ovBkQDn3w7W2j2AHz0fTFv+y9VMW6aTLRr45p0eXFicj6summV0KQmzWirz3AmsuAfuRExbGsvyP+3mlm40t3RjwxpzLZkWr/DJt6ySymxwe1E+Mw8lBVOMLoUMwLSlsSzfwDfXe5Cfk4mvrLJH2mteoXVSmaoaOoEV976diGlL41m6gXtPD+PPe9pw48r5mD4l2+hyksYqqUz3qTM4dXqY828HCqctC6Zm47++fIktXv1akaUb+FMNLRgeDVj+zcvzhVOZ2w+Ze4zScPYEVtwDd5pfhdKWv7zpUsyalmt0OY5l2QbuDyge3+nBmgtnYnGpvU6gFE5lmn0O7nJ7UZiXjQtnm3PJOkqNtz7owiNMW5qCZRv4awdOorV7ABtttvcNWCeV6XL7UFtRhAyTL5pBycO0pblYtoFvrndjTsEUXLOk1OhSUsLsqcxT/UM40nXacivQU2KYtjQXSzbwDzv78ebhLnzj8nLbHndq9lSmy+MDwPm3kzBtaT6W7H5b6j3IzhTcurrc6FJSxuypTJfbi5ysDCybP8PoUigNwmnLleWFTFuaiOUa+OmhUTzTeBzXXTIXxdPt/e73WhOnMl0eH5aXzUBuFl9G210goPje083BtOUtTFuaieV+E8+924q+oVFssOCiDbGqM2kqc2DYj72tPZx/O8SjO46i/sgp3Hv9UlTMyje6HBrDUg1cVbGl3oOl8wqwstz+s1ezpjKbj3djxK88/4kD7G/vxS9fOci0pUlZqoHvOurFwY4+bLjCHuc9iYYZU5nhE1jxFLL2xrSl+SXcwEUkU0TeFZEXk1FQJFvqPZgxNRtfXD4/1U9lGmZMZbo8PiwunYbCPGuvdygiC0TkdRHZLyL7ROSO0O0zReRVETkc+uzI/6nOpi2/yrSlWSVjD/wOAPuT8DgRnegZxMv7TuDm2jJHHX9qtlSmP6Bo9PjsMv8eBXC3qlYDWAPg2yKyBMA9ALap6iIA20LXHeXtUNrytjXl+EwV05ZmlVADF5EyAJ8H8EhyypnY7985hoAqbrPwkmnxMFsq81BHH/oGR20x/1bVdlXdHbrch+COyHwAXwKwKXS3TQBuMKRAg/ScGcHdfwymLX943RKjy6EIEt0DfxDAvwOYsLOIyO0i4hIRV2dnZ1xPMjwawO93HcPVi4sd+S64mVKZrrMnsLLFHvhZIlIJYAWAXQBKVbUdCDZ5AOPugiZj2zajH2/di86+ITxwM9OWZhd3AxeRLwA4qaqNke6nqg+paq2q1hYXF8f1XC/vO4Gu/iFsuLIyru+3unAqc5sJxigujw+lBbkoK7Lu2qPnE5FpAJ4BcKeq9kb7fcnYts1ma1MrXgilLZcvKDS6HJpEInvgVwH4ooi4ATwJYK2IPJ6Uqs6z+W03Kmbl4dOL7PFHEqu8nCxcuXAWth3oMDyVGVzAYaZtjkgQkWwEm/cTqvps6OYOEZkb+vpcAMb/z5kGTFtaT9wNXFW/r6plqloJ4FYAr6nqbUmrLGRfWw9cHh/Wr6lw9Fnv6qpL4TllbCqzrXsArd0Dtph/A4AE/xd6FMB+Vf31mC+9AGBj6PJGAFvTXVu6MW1pTab/LW2p92BKdgZuWrXA6FIMZYZU5rkTWNlm/n0VgPUIvnpsCn1cB+A+ANeIyGEA14Su21o4bfmT65c48n0mq8pKxoOo6nYA25PxWGP1nBnB802tuKFmPmbk2WfJtHiMTWX+86eNeXnrcnuRn5OJqjn2WEBDVXcAmOhlXV06azHS2LTlzbXO3lGyGlPvgf+xsQWDIwGsd8B5T6JhdCqzwe3DivIivry2kcERP+56imlLqzLtX2IgoNiy04PaiiIsncdTlgLBsxMalcrsHRzBgRO9XIHeZu7/20EcOMG0pVWZtoG/cbgTnlNnuPc9xqUGpjLfPdYNVVvNvx3v7Q+68PCbTFtamWkb+JZ6D2ZPy8Xnls01uhTTMDKV6XJ7kZkhqOGxwbZwNm05m2lLKzNlAz926gxeP3gSX1+9ADlZpizRMOFUpivNqcwGtxdL5hYgPzcp73uTwc6mLbm2paWZsjs+vsuDDBF8/XKOT853bq3M9I1RRvwBNLV0c/5tE0xb2ofpGvjAsB9PNbTgs0tLMWfGFKPLMR0jUpn72noxOBLg/NsG2pi2tBXTNfA/N7ehZ2AEG66oNLoU00p3KjM8rrFLAtOpAgHF3Uxb2oqpfoOqik31biwunYbLL+De3kTSncpscHtRPjMPJQV8RWRlTFvaj6ka+O5j3djX1osNV1QyUBBBOJX5WhoauGp4AQfufVsZ05b2ZKoGvrnejem5WbhxhXOWTItXXXUJXB5vylOZ7lNn0NU/zPm3hTFtaV+maeCdfUP463vt+MqqMh6qFoV0rZXZwPm35TFtaV+maeBPvnMMI35l8jJK6UplutxeFOZlY2HxtJQ+D6XG2x9ybUs7M0UDH/UH8MSuY/jkotlsFFEam8oc8aculeny+FBbUeToc7FbVc+ZEdz9dDMumMW0pV2ZooG/+n4HTvQOYr3DFixO1NrwWplHU5PKPNU/hCOdp+2yAr3jMG1pf6Zo4JvrPZhfOBV11aVGl2Ipn0xxKjO8gAPn39YTTlt+l2lLWzO8gY/4AygpyMX/vKoSmXyZHpNUpzJdbi9ysjJwSRlP52sl4bTlivJC/CvTlrZmeAPPzszAb25dgf/9yQuNLsWSUpnKdHl8WF42A7lZfPltFeG0pT+geJBpS9vjb9fiwqnMbUkeowwM+7G3tYfzb4t57K1g2vJepi0dgQ3c4uYVTkX13IKkN/Dm490Y8Svn3xZy4EQvfvEy05ZOwgZuA+tSkMpsDL2BuYoN3BIGR/y480mmLZ2GDdwGUpHKbHB7sbh0GgrzcpL2mJQ64bTlL756CdOWDsIGbgOXzp+B2dOSl8r0B4InsFpVwfm3FYTTlt+4vBxrq3gorpOwgdtARoZgbVVx0lKZhzr60Dc4ist4BkLT6xkYwfeebkblrHz88PPVRpdDacYGbhN11aVJS2WGAzx2PwOhiDwmIidFZO+Y234qIq0i0hT6uM7IGifzk6170dE3hAdvqUFeDk8C5zRs4DaRzFSmy+1FaUEuyoqmJqEyU/sdgGvHuf0BVa0Jffw1zTVFbWtTK7Y2cW1LJ2MDt4lkpjJdbh9qK2ba/kgGVf0HgNScSCbFmLYkgA3cVs6lMk/H/Rht3QNo7R5w+go83xGRPaERy4Q/CBG5XURcIuLq7OxMW3FMW1IYf/M2svZsKrMj7sdwyvw7gt8CWAigBkA7gPsnuqOqPqSqtapaW1xcnKbyzqUtf/IFpi2djg3cRuYnIZXpcnuRn5OJqjnTk1iZdahqh6r6VTUA4GEAq42uaaxw2nJddSluuYxpS6djA7eZRFOZDW4fVpQXOfZluYjMHXP1RgB7J7pvug2Nnktb/vwrTFsSG7jtJJLK7B0cwcETvY6Zf4vIHwDUA7hYRI6LyDcB/EJE3hORPQA+A+AuQ4sc4/6/HWLakj6CB47aTDiVuW3/Sdy4oiym7333WDcC6pz5t6p+bZybH017IVF4+8MuPPzmEaYt6SO4B24z4VTmG4diT2W63F5kZghqeEyxqTBtSRNhA7ehuupS9A3GnspscHuxZG4B8nP5wsxMwmnLB5i2pPPE3cBFZIGIvC4i+0Vkn4jckczCKH7xpDJH/AE0tXQ7Zv5tFS80t2FrUxu+u3YRXxnRxySyBz4K4G5VrQawBsC3RWRJcsqiRMSTytzX1ovBkYBj5t9W0NY9gB899x5WlBfi259h2pI+Lu4Grqrtqro7dLkPwH4A85NVGCWmrqokplSmyx0ct3AFHnMIBBTf+2MzRpm2pAiSslWISCWAFQB2jfM1Q+LGTre2OnikQrSpTJfbh/KZeSgpmJLKsihKj711FG9/yLQlRZZwAxeRaQCeAXCnqvae/3Wj4sZOF0sqU1Xh8ng5/zYJpi0pWgk1cBHJRrB5P6GqzyanJEqWaFOZ7lNn0NU/zPm3CZxLW2bhPqYtaRKJHIUiCIYe9qvqr5NXEiXL2qoSBBR441Dk0VUD59+mcS5teSlmM21Jk0hkD/wqAOsBrLXK6iVOs7ysMLRWZuQ5eKPbh8K8bCwsnpamymg89R+eYtqSYhJ3KkBVdwDg6zsTC6cyX9p7AiP+ALInOJKhweNFbUURMjL46zRKz8AI7n66iWlLigmPTbK5yVKZp/qHcKTzNFegNxjTlhQPNnCb+8RFkVOZ5xZw4PzbKExbUrzYwG0uPzcLV1w4cSqz0eNDTlYGLimbYUB1xLQlJYIN3AHWVU+cymxwe7G8bAZyszINqMzZxqYtH7iZaUuKHbcYB5golTk44sfe1h7Ovw0yNm1ZOZtpS4odG7gDTJTKbG7pxohfOf82wIETvfjFK0xbUmLYwB0inMrsPnMulRl+A3MVAzxpdTZtOYVpS0oMG7hDhFOZ2w+eS2U2uL1YXDoNhXk5BlbmPExbUrKwgTvE+anMQEDR6PFx/p1m4bTl15m2pCRgA3eI89fKPHSyD32Do5x/p9HYtOWPmLakJGADd5CxqcwGdzjAwz3wdLmXaUtKMm5FDvKJi2YjJzMD2w6cRFf/EEqm56KsaKrRZTnCC81teL6pDXetW8y0JSUNG7iD5Odm4YqFs7Btf0fo8MGZPAIiDZi2pFThCMVh1lWXwH3qDFq7Bxy/Ao+IPCYiJ0Vk75jbZorIqyJyOPQ5oR8S05aUStyaHCacygQ4/wbwOwDXnnfbPQC2qeoiANtC1+MWTlv+mGlLSgE2cIcJpzLzcjJRNWe60eUYSlX/AeD88+x+CcCm0OVNAG6I9/EPnug7m7a8lWlLSgHOwB3oP669GO09g3w5P75SVW0HAFVtF5GSie4oIrcDuB0AysvLP/b1DAEuv2Am05aUMmzgDnT1xRP2JIqBqj4E4CEAqK2t/di5eheVTseWb16e9rrIObgLRvRRHSIyFwBCn8dfCYPIBNjAiT7qBQAbQ5c3AthqYC1EEbGBk2OJyB8A1AO4WESOi8g3AdwH4BoROQzgmtB1IlPiDJwcS1W/NsGX6tJaCFGcuAdORGRRbOBERBbFBk5EZFFs4EREFiWqH8sfpO7JRDoBeCb48mwAXWkrJnlYd3pFqrtCVYvTWUxYhG3bqj9nwLq127HucbfttDbwSETEpaq1RtcRK9adXlar22r1jmXV2p1UN0coREQWxQZORGRRZmrgDxldQJxYd3pZrW6r1TuWVWt3TN2mmYETEVFszLQHTkREMWADJyKyKMMbuIhcKyIHReQDEUlo/cF0Gm9BXCsQkQUi8rqI7BeRfSJyh9E1RUNEpojIOyLSHKr7Z0bXNBlu2+nj1O3a0Bm4iGQCOITgaTuPA2gA8DVVfd+woqIkIp8C0A9gs6ouM7qeaIUWKZirqrtFZDqARgA3mP1nLsE1yfJVtV9EsgHsAHCHqu40uLRxcdtOL6du10bvga8G8IGqHlHVYQBPIriorOlNsCCu6alqu6ruDl3uA7AfwHxjq5qcBvWHrmaHPsz8Djy37TRy6nZtdAOfD6BlzPXjsMAP3S5EpBLACgC7DC4lKiKSKSJNCC5z9qqqmrlubtsGcdJ2bXQDH2+pbjPvVdmGiEwD8AyAO1W11+h6oqGqflWtAVAGYLWImPnlPbdtAzhtuza6gR8HsGDM9TIAbQbV4hihWdszAJ5Q1WeNridWqtoNYDuAa42tJCJu22nmxO3a6AbeAGCRiFwgIjkAbkVwUVlKkdCbJo8C2K+qvza6nmiJSLGIFIYuTwWwDsABQ4uKjNt2Gjl1uza0gavqKIDvAHgFwTcdnlbVfUbWFK0JFsS1gqsArAewVkSaQh/XGV1UFOYCeF1E9iDYHF9V1RcNrmlC3LbTzpHbNaP0REQWZfQIhYiI4sQGTkRkUWzgREQWxQZORGRRbOBERBbFBk5EZFFs4EREFvX/AQakEqag8CvOAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"#plot 1:\n",
"x = [0, 1, 2, 3]\n",
"y = [3, 8, 1, 10]\n",
"\n",
"plt.subplot(1, 2, 1)\n",
"plt.plot(x,y)\n",
"\n",
"#plot 2:\n",
"x = [0, 1, 2, 3]\n",
"y = [10, 20, 30, 40]\n",
"\n",
"plt.subplot(1, 2, 2)\n",
"plt.plot(x,y)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "840fadd3",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAKg0lEQVR4nO3dX4yld13H8c/XLgilENFOFWmXgQRLSC+AjP+o0dhKrNZYSHrRGkg16F5VQU3I6k293AtDMNFINogWRRoDJBJrEFIk/iONu6VG2hXBsmKl0kVM/BNMaf16sadJGdqZ2XNO9/S7vF7JZuY8c+Y835ycvOe3z3memeruADDPN216AACWI+AAQwk4wFACDjCUgAMMdeh87uzSSy/t7e3t87lLgPFOnjz5pe7e2r39vAZ8e3s7J06cOJ+7BBivqv75ybY7hAIwlIADDCXgAEMJOMBQAg4wlIADDLVvwKvq3VX1cFV96gnbvrWqPlpVn1l8fOHTOyYAux1kBf57Sa7bte1okru6++VJ7lrcBuA82jfg3f0XSb68a/MNSW5ffH57ktevdywA9rPslZjf3t0PJUl3P1RVlz3VHavqSJIjSXL48OEldwdMtn30zk2PsHGnj12/9sd82t/E7O7j3b3T3TtbW193KT8AS1o24F+sqhclyeLjw+sbCYCDWDbgH0pyy+LzW5L88XrGAeCgDnIa4fuSfCLJlVX1YFW9OcmxJK+rqs8ked3iNgDn0b5vYnb3zU/xpWvXPAsA58CVmABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwy1UsCr6her6r6q+lRVva+qnrOuwQDY29IBr6oXJ/mFJDvdfVWSi5LctK7BANjbqodQDiV5blUdSnJxki+sPhIAB3Fo2W/s7n+tql9P8vkkX0nyke7+yO77VdWRJEeS5PDhw8vujhVtH71z0yNs1Olj1296BFi7VQ6hvDDJDUlemuQ7kzyvqt64+37dfby7d7p7Z2tra/lJAfgaqxxC+ZEkn+vuM9391SQfTPLa9YwFwH5WCfjnk3xfVV1cVZXk2iSn1jMWAPtZOuDdfXeS9ye5J8nfLx7r+JrmAmAfS7+JmSTdfVuS29Y0CwDnwJWYAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDLVSwKvqW6rq/VX1D1V1qqq+f12DAbC3Qyt+/28k+XB331hVz05y8RpmAuAAlg54Vb0gyQ8m+ekk6e5HkjyynrEA2M8qh1BeluRMkt+tqk9W1buq6nlrmguAfawS8ENJXpPkt7v71Un+J8nR3XeqqiNVdaKqTpw5c2aF3QHwRKsE/MEkD3b33Yvb78/ZoH+N7j7e3TvdvbO1tbXC7gB4oqUD3t3/luRfqurKxaZrk9y/lqkA2NeqZ6H8fJL3Ls5AeSDJz6w+EgAHsVLAu/veJDvrGQWAc+FKTIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChVg54VV1UVZ+sqj9Zx0AAHMw6VuBvSXJqDY8DwDlYKeBVdXmS65O8az3jAHBQq67A35HkbUn+76nuUFVHqupEVZ04c+bMirsD4HFLB7yqfiLJw919cq/7dffx7t7p7p2tra1ldwfALquswK9O8pNVdTrJHUmuqao/WMtUAOxr6YB396909+XdvZ3kpiQf6+43rm0yAPbkPHCAoQ6t40G6++NJPr6OxwLgYKzAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgqLX8PvDzYfvonZseYaNOH7t+0yMAzzBW4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwy1dMCr6oqq+vOqOlVV91XVW9Y5GAB7W+Uv8jya5Je7+56qen6Sk1X10e6+f02zAbCHpVfg3f1Qd9+z+Py/kpxK8uJ1DQbA3tZyDLyqtpO8OsndT/K1I1V1oqpOnDlzZh27AyBrCHhVXZLkA0ne2t3/ufvr3X28u3e6e2dra2vV3QGwsFLAq+pZORvv93b3B9czEgAHscpZKJXkd5Kc6u63r28kAA5ilRX41UnelOSaqrp38e/H1zQXAPtY+jTC7v6rJLXGWQA4B67EBBhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoZb+feDwjWT76J2bHmGjTh+7ftMj8CSswAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGWingVXVdVX26qj5bVUfXNRQA+1s64FV1UZLfSvJjSV6Z5OaqeuW6BgNgb6uswL8nyWe7+4HufiTJHUluWM9YAOynunu5b6y6Mcl13f2zi9tvSvK93X3rrvsdSXJkcfPKJJ9eftyNujTJlzY9xGCev9V4/lYz/fl7SXdv7d64yl+lryfZ9nU/Dbr7eJLjK+znGaGqTnT3zqbnmMrztxrP32ou1OdvlUMoDya54gm3L0/yhdXGAeCgVgn43yZ5eVW9tKqeneSmJB9az1gA7GfpQyjd/WhV3Zrkz5JclOTd3X3f2iZ75hl/GGjDPH+r8fyt5oJ8/pZ+ExOAzXIlJsBQAg4wlIAfQFW9oaq6ql6x6VmmqarHqureqvq7qrqnql676ZkmqarvqKo7quqfqur+qvrTqvquTc81xRNef/ctXoO/VFUXTPccAz+AqvqjJC9Kcld3/9qGxxmlqv67uy9ZfP6jSX61u39ow2ONUFWV5G+S3N7d71xse1WS53f3X25ytil2vf4uS/KHSf66u2/b7GTrccH8JHq6VNUlSa5O8uacPVWS5b0gyX9seohBfjjJVx+Pd5J0973ivZzufjhnrwq/dfHDcbxVrsT8RvH6JB/u7n+sqi9X1Wu6+55NDzXIc6vq3iTPydn/xVyz2XFGuSrJyU0PcSHp7gcWh1AuS/LFTc+zKivw/d2cs7+oK4uPN29wlom+0t2v6u5XJLkuyXsulNUPY10wrz8r8D1U1bfl7IrxqqrqnL1gqavqbe3Ng3PW3Z+oqkuTbCV5eNPzDHBfkhs3PcSFpKpeluSxXCCvPyvwvd2Y5D3d/ZLu3u7uK5J8LskPbHiukRZn8VyU5N83PcsQH0vyzVX1c49vqKrvripvAi+hqraSvDPJb14oCzAr8L3dnOTYrm0fSPJTSbyRdDCPHwNPzv7X9ZbufmyD84zR3V1Vb0jyjsVfvPrfJKeTvHWTcw3z+OvvWUkeTfL7Sd6+0YnWyGmEAEM5hAIwlIADDCXgAEMJOMBQAg4wlIADDCXgAEP9Py5kC1E3kOfwAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"x = [\"A\", \"B\", \"C\", \"D\"]\n",
"y = [3, 8, 1, 10]\n",
"\n",
"plt.bar(x,y)\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|