File size: 51,428 Bytes
d48d4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "7a095b1d",
   "metadata": {},
   "source": [
    "# Python Tutorial (Beginners)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "929f009f",
   "metadata": {},
   "source": [
    "In this tutorial some basic concepts like variables, loops, conditional statements, and functions will be discussed. we will start with variables:"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2da4d02a",
   "metadata": {},
   "source": [
    "## Variables"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3fd5c8a3",
   "metadata": {},
   "source": [
    "In python, we have 4 kinds of variables: numerical variables, strings, boolean, and complex numbers variables."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a122a867",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "24 <class 'int'>\n",
      "Ali <class 'str'>\n",
      "True <class 'bool'>\n"
     ]
    }
   ],
   "source": [
    "age = 24\n",
    "name = \"Ali\"\n",
    "is_student = True\n",
    "\n",
    "print(age,type(age))\n",
    "print(name,type(name))\n",
    "print(is_student,type(is_student))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5a958bac",
   "metadata": {},
   "source": [
    "We can cast the variable types to each others, meaning that converting the type of the variables using functions below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "3dc9be28",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Casting\n",
    "x = str(3)    # x will be '3'\n",
    "y = int(3)    # y will be 3\n",
    "z = float(3)  # z will be 3.0\n",
    "n = bool(3)   # n will be True"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6acf69aa",
   "metadata": {},
   "source": [
    "## Input data"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fc2f5cc3",
   "metadata": {},
   "source": [
    "by just one line of code, you can get the input data from the keyboard. Just remember that the type of this data will be string..."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "id": "f4f0441e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "what's your name? Ali\n",
      "Your name is Ali\n"
     ]
    }
   ],
   "source": [
    "name=input(\"what's your name? \")\n",
    "print(\"Your name is \"+name)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf245272",
   "metadata": {},
   "source": [
    "## Strings"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7caee28a",
   "metadata": {},
   "source": [
    "Strings in python are surrounded by either single quotation marks, or double quotation marks.\n",
    "\n",
    "'hello' is the same as \"hello\"."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "157b0f7d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2\n",
      "TODAY IS A GREAT DAY!\n",
      "3\n",
      "Today is a greaaaaaaaaat day!\n",
      "True\n"
     ]
    }
   ],
   "source": [
    "context='Today is a great day!'\n",
    "print(context.count('d'))\n",
    "print(context.upper())\n",
    "print(context.find('a'))\n",
    "print(context.replace('great','greaaaaaaaaat'))\n",
    "print('great' in context)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9773b46f",
   "metadata": {},
   "source": [
    "## Math operators"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "952d3451",
   "metadata": {},
   "source": [
    "Arithmetic or math operators are used with numeric values to perform common mathematical operations:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "40b2ddef",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.6666666666666667\n",
      "1\n",
      "4\n",
      "8\n"
     ]
    }
   ],
   "source": [
    "#we have +, -, /, *, //, %, **\n",
    "\n",
    "print(10/6) # Division\n",
    "print(10//6) # Floor division\n",
    "print(10%6) # Modulus\n",
    "print(2**3) # Exponentiation"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fceb3dc6",
   "metadata": {},
   "source": [
    "## Comparison operators"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1df26526",
   "metadata": {},
   "source": [
    "Comparison operators are used to compare two values. The output is a boolean variable.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "48551023",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "False\n"
     ]
    }
   ],
   "source": [
    "# <, >, ==, !=, >=, <=\n",
    "\n",
    "print(1>100)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ee87b217",
   "metadata": {},
   "source": [
    "## Logical operators"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a82c266",
   "metadata": {},
   "source": [
    "Logical operators are used to combine conditional statements:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "c34d2249",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "False\n"
     ]
    }
   ],
   "source": [
    "# and: Returns True if both statements are true\n",
    "# or: Returns True if one of the statements is true\n",
    "# not: Reverse the result, returns False if the result is true\n",
    "\n",
    "print(1>0 and 1>2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "21ba4836",
   "metadata": {},
   "source": [
    "## Conditional statement"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "362ae8c6",
   "metadata": {},
   "source": [
    "Python relies on indentation (whitespace at the beginning of a line) to define scope in the code. Other programming languages often use curly-brackets for this purpose."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "id": "651af70e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "enter your score: 20\n",
      "Your scaled score is: 4\n"
     ]
    }
   ],
   "source": [
    "# Writing lines of code that convert your score to american scale\n",
    "score=input('enter your score: ')\n",
    "score=float(score)\n",
    "\n",
    "if score >= 16:\n",
    "    scaled=4\n",
    "elif score <= 15 and score >= 14:\n",
    "    scaled=3\n",
    "elif score <= 13 and score >= 12:\n",
    "    scaled=2\n",
    "elif score <= 11 and score >= 10:\n",
    "    scaled=1\n",
    "else:\n",
    "    scaled=0\n",
    "\n",
    "# Using format string to include variables in the string.  \n",
    "print(\"Your scaled score is: {}\".format(scaled))\n",
    "#print(f\"Your scaled score is: {scaled}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ace97b5a",
   "metadata": {},
   "source": [
    "The format() method formats the specified value(s) and insert them inside the string's placeholder.\n",
    "The placeholder is defined using curly brackets: {}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d92becba",
   "metadata": {},
   "source": [
    "## while loop"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bbd37206",
   "metadata": {},
   "source": [
    "Python has two primitive loop commands:\n",
    "\n",
    "--> while loops\n",
    "\n",
    "--> for loops\n",
    "\n",
    "With the while loop we can execute a set of statements as long as a condition is true. The while loop requires relevant variables to be ready, in this example we need to define an indexing variable, i, which we set to 1.\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "id": "eb99d022",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "i is no longer less than 6\n"
     ]
    }
   ],
   "source": [
    "i = 1\n",
    "while i < 6:\n",
    "    print(i)\n",
    "    i += 1\n",
    "else:\n",
    "    print(\"i is no longer less than 6\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d47e1d64",
   "metadata": {},
   "source": [
    "Note: With the \"break\" statement we can stop the loop even if the while condition is true.\n",
    "\n",
    "Note: With the \"continue\" statement we can stop the current iteration, and continue with the next.\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e9e87ff6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1\n",
      "Can I stop now??!no\n",
      "2\n",
      "Can I stop now??!yeS\n"
     ]
    }
   ],
   "source": [
    "i = 1\n",
    "while i < 100:\n",
    "    print(i)\n",
    "    i += 1\n",
    "    input_=input('Can I stop now??!')\n",
    "    input_=input_.lower()\n",
    "    if input_=='yes':\n",
    "        break"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "960ea4eb",
   "metadata": {},
   "source": [
    "## for loop"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d90ddfa2",
   "metadata": {},
   "source": [
    "A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set, or a string).\n",
    "\n",
    "This is less like the for keyword in other programming languages, and works more like an iterator method as found in other object-orientated programming languages.\n",
    "\n",
    "With the for loop we can execute a set of statements, once for each item in a list, tuple, set etc.\n",
    "\n",
    "Note: \"break\" and \"continue\" works here as before."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "id": "cc042b24",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "apple\n",
      "0\n",
      "banana\n",
      "1\n",
      "cherry\n",
      "2\n"
     ]
    }
   ],
   "source": [
    "fruits = [\"apple\", \"banana\", \"cherry\"]\n",
    "for i, x in enumerate(fruits):\n",
    "    print(x)\n",
    "    print(i)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "38d6ca50",
   "metadata": {},
   "source": [
    "To loop through a set of code a specified number of times, we can use the range() function,\n",
    "The range() function returns a sequence of numbers, starting from 0 by default, and increments by 1 (by default), and ends at a specified number."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "id": "3cc097ba",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "Finally finished!\n"
     ]
    }
   ],
   "source": [
    "for x in range(100):\n",
    "    print(x)\n",
    "else:\n",
    "    print(\"Finally finished!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b6144cba",
   "metadata": {},
   "source": [
    "The range() function defaults to increment the sequence by 1, however it is possible to specify the increment value by adding a third parameter: range(2, 30, 3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8b4b5e70",
   "metadata": {},
   "source": [
    "## Lists"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f0dff88",
   "metadata": {},
   "source": [
    "Lists are used to store multiple items in a single variable. Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set, and Dictionary, all with different qualities and usage. We can shortly summerize their properties below:\n",
    "\n",
    "List is a collection which is ordered and changeable. Allows duplicate members.\n",
    "\n",
    "Tuple is a collection which is ordered and unchangeable. Allows duplicate members.\n",
    "\n",
    "Set is a collection which is unordered, unchangeable*, and unindexed. No duplicate members.\n",
    "\n",
    "Dictionary is a collection which is ordered** and changeable. No duplicate members."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "9428f711",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5\n",
      "['apple', 'banana', 'cherry', 5, True]\n",
      "['apple', 'banana']\n",
      "['apple', 'Ali', 'banana', 'cherry', 5, True, 6]\n",
      "['Ali', 'banana', 'cherry', 5, True, 6]\n",
      "True\n"
     ]
    }
   ],
   "source": [
    "thislist = [\"apple\", \"banana\", \"cherry\", 5 , True]\n",
    "print(len(thislist)) # returns the length of the list\n",
    "print(thislist)\n",
    "print(thislist[0:2]) # returns the defined elements of the list\n",
    "\n",
    "# Methods\n",
    "thislist.append('6') # insert the new element at the end of the list\n",
    "thislist.insert(1,'Ali') # insert the element at the desired index (here 1)\n",
    "print(thislist)\n",
    "thislist.pop(0) # deletes the defined element of the list\n",
    "print(thislist)\n",
    "\n",
    "print(5 in thislist)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "37bdbece",
   "metadata": {},
   "source": [
    "#### IMPORTANT Note: keep in mind that in python, the indices start from 0 (unlike MATLAB that start from 1)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8772402b",
   "metadata": {},
   "source": [
    "## tuples"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5c65ebc4",
   "metadata": {},
   "source": [
    "Tuples are used to store multiple items in a single variable.\n",
    "\n",
    "A tuple is a collection which is ordered and unchangeable.\n",
    "\n",
    "Tuples are written with round brackets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "8e9f366b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "3\n",
      "('abc', 34, True, 40, 'NOT')\n"
     ]
    }
   ],
   "source": [
    "thistuple = (\"apple\", \"banana\", \"cherry\")\n",
    "print(len(thistuple))\n",
    "tuple1 = (\"abc\", 34, True, 40, \"NOT\")\n",
    "print(tuple1)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f6a41e81",
   "metadata": {},
   "source": [
    "## Sets"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7dbbba2b",
   "metadata": {},
   "source": [
    "A set is a collection which is unordered, unchangeable*, and unindexed.\n",
    "\n",
    "* Note: Set items are unchangeable, but you can remove items and add new items.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "269d7988",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{True, 2, 'cherry', 'apple', 'banana'}\n"
     ]
    }
   ],
   "source": [
    "new_set = {\"apple\", \"banana\", \"cherry\", True, 1, 2, 2}\n",
    "print(new_set)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "e90b39d3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{True, 2, 'cherry', 'banana'}\n"
     ]
    }
   ],
   "source": [
    "new_set.remove('apple') # we cannot remove by index, because index has no meaning in sets!!\n",
    "print(new_set)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "f939ce8c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{True, 2, 'cherry', 'Hi', 'banana'}\n"
     ]
    }
   ],
   "source": [
    "new_set.add('Hi') # we cannot remove by index, because index has no meaning in sets!!\n",
    "print(new_set)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "id": "049b3aa4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['Hi', 'cherry']\n",
      "*******\n",
      "True\n",
      "*******\n",
      "True\n",
      "2\n",
      "cherry\n",
      "Hi\n",
      "banana\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\aligh\\AppData\\Local\\Temp/ipykernel_11788/3704487697.py:3: DeprecationWarning: Sampling from a set deprecated\n",
      "since Python 3.9 and will be removed in a subsequent version.\n",
      "  print(random.sample(new_set, 2))\n"
     ]
    }
   ],
   "source": [
    "# sample from the set:\n",
    "import random\n",
    "print(random.sample(new_set, 2))\n",
    "\n",
    "print('*******')\n",
    "# another way: by converting set to list\n",
    "print(list(new_set)[0])\n",
    "\n",
    "print('*******')\n",
    "# another way: by iterating over a loop\n",
    "for i in new_set:\n",
    "    print(i)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "286a5c81",
   "metadata": {},
   "source": [
    "## Dictionary"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c51ed29b",
   "metadata": {},
   "source": [
    "Dictionaries are written with curly brackets, and have keys and values. Dictionary items are presented in key:value pairs, and can be referred to by using the key name. in this example, the keys are 'brand', 'model', and 'year. we cannot have several same keys (like year here), and the dictionary will only keep one of them."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "id": "364bc79f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'brand': [], 'model': 'Mustang', 'year': 2020}\n"
     ]
    }
   ],
   "source": [
    "thisdict = {\n",
    "  \"brand\": [],\n",
    "  \"model\": \"Mustang\",\n",
    "  \"year\": 1964,\n",
    "  \"year\": 2020\n",
    "}\n",
    "print(thisdict)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "id": "72014022",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'brand': ['Ford'], 'model': 'Mustang', 'year': 2020}\n"
     ]
    }
   ],
   "source": [
    "# adding an element to the 'brand' key\n",
    "thisdict['brand'].append('Ford')\n",
    "print(thisdict)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "id": "bf091f0c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dict_keys(['brand', 'model', 'year'])"
      ]
     },
     "execution_count": 72,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# keys of the dictionary\n",
    "thisdict.keys()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7786ced7",
   "metadata": {},
   "source": [
    "## Functions"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a9e1e91",
   "metadata": {},
   "source": [
    "A function is a block of code which only runs when it is called.\n",
    "You can pass data, known as parameters, into a function.\n",
    "A function can return data as a result.\n",
    "\n",
    "In Python a function is defined using the def keyword:\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "id": "52c2e95f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "15\n",
      "25\n",
      "45\n"
     ]
    }
   ],
   "source": [
    "def my_function(x):\n",
    "    result= 5 * x\n",
    "    return result\n",
    "\n",
    "print(my_function(3))\n",
    "print(my_function(5))\n",
    "print(my_function(9))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "93a11d54",
   "metadata": {},
   "source": [
    "## Plotting"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "307d4912",
   "metadata": {},
   "source": [
    "matplotlib is a strong library for plotting in python. Below is a brief representation of this library, but you can learn more about this on https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html and search for your intended plot."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "id": "49b5121d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgu0lEQVR4nO3dd3xUZd7+8c9NTUIvAUIJvRNqAAHXBhaEBYH1t7p218XtbhOCYsWCrrvqs7bF7lp2NQFEUcSCHQugTEJI6L0k1IQUUub7+4Ps87gszcxJzszker9evBKG4ZxLSC5v7pnzPc7MEBGRyFPL7wAiIlI5KnARkQilAhcRiVAqcBGRCKUCFxGJUHWq82QtW7a0Tp06VecpRUQi3vLly/eYWfzRj1drgXfq1Illy5ZV5ylFRCKec27zsR7XFoqISIRSgYuIRCgVuIhIhFKBi4hEKBW4iEiEOmmBO+eecc7lOOcyvvNYc+fcu865tRUfm1VtTBEROdqprMCfAy446rEU4H0z6w68X/FzERGpRictcDP7GNh31MMTgecrPn8euMjbWCIi0WF/QQl3vLGKvOJSz49d2T3w1ma2E6DiY6vjPdE5N9U5t8w5tyw3N7eSpxMRiSxmxsLATs598CP+sXQzX204eh0cuiq/EtPM5gBzAJKTk3X3CBGJejl5xcycn8HizN0ktWvCP346nN4JjT0/T2ULfLdzLsHMdjrnEoAcL0OJiEQiM+O1ZduYtTCTkrIgM8b24qend6ZO7ap5w19lC3wBcBUwu+Lj654lEhGJQFv2FjJjXoDP1u1lWOfm3DelP51bNqjSc560wJ1zrwBnAS2dc9uA2zhS3K86534KbAEursqQIiLhqjxoPPf5Jh54J5vatRx3XdSPnwxLpFYtV+XnPmmBm9mlx/ml0R5nERGJKGt35zMtLcA3Ww5wds947p6URNumsdV2/modJysiEg1KyoI88dF6HvlgHQ3q1+ahHw9k4sC2OFf1q+7vUoGLiHwPgW0HmJYaIGtXPj8c0JbbftiHlg3r+5JFBS4icgqKSsp56L01PPnJBuIb1efJK5M5t09rXzOpwEVETuKLDXtJSQuwaW8hlw7rwIwLe9M4pq7fsVTgIiLHk19cyuy3s3jpyy0kNo/j5euGM7JbS79j/S8VuIjIMXyQtZub52WwO6+Y607vzB/P60lsvdp+x/oPKnARke/YV1DCnW+sYv63O+jRuiGPXTaSQYnhOTFbBS4iwpHL4N8I7OT2BavILy7ld2O688uzulGvTvje90YFLiI13q6Dxcycn857q3MY0KEp90/pT882jfyOdVIqcBGpscyMf369lXsWrqY0GGTmuN5cM6oztavhMngvqMBFpEbavLeAlLR0lm7Yy4guLZg9JYmOLap2+JTXVOAiUqOUB41nP9vIA4uzqVurFvdOTuKSoR2q/TJ4L6jARaTGyN51ZPjUyq0HGNO7FXddlESbJjF+x6o0FbiIRL2SsiCPLlnHYx+uo3FMXf526SDG90+IyFX3d6nARSSqfbv1ANNSV7Jm9yEuGtiWW3/Yl+YN6vkdyxMqcBGJSkUl5fxlcTbPfLaR1o1jeObqZM7p5e/wKa+pwEUk6ny+fg8paels2VfIZcMTSRnbi0ZhMHzKaypwEYkaecWl3PvWal75aiudWsTxz6mncVqXFn7HqjIqcBGJCu9m7mbm/HRy8w9z/Rld+N2YHmE3fMprIRW4c+4G4GeAA540s4e8CCUicqr2HDrM7QtW8WZgJ73aNOLJK5Pp376p37GqRaUL3DnXjyPlPQwoARY55xaa2VqvwomIHI+Z8fq3O7jjjVUUHC7nj+f24Pozu4b18CmvhbIC7w18YWaFAM65j4BJwP1eBBMROZ4dB4qYOT+DD7JyGJR4ZPhU99bhP3zKa6EUeAZwt3OuBVAEXAgsO/pJzrmpwFSAxMTEEE4nIjVdMGi8/NUWZr+dRXnQuHV8H64a2Slihk95rdIFbmarnXP3Ae8Ch4CVQNkxnjcHmAOQnJxslT2fiNRsG/cUkJIW4MuN+zi9W0vunZxEh+ZxfsfyVUgvYprZ08DTAM65e4BtXoQSEfm3svIgT3+6kb++u4Z6dWpx/5T+XJzcPuIvg/dCqO9CaWVmOc65RGAyMMKbWCIikLkjj+lpAdK3H+S8Pq2ZdVE/WjeO3OFTXgv1feBpFXvgpcCvzGy/B5lEpIY7XFbOIx+s4/EP19M0ri6P/mQwFya10ar7KKFuofzAqyAiIgDLN+9nelqAdTmHmDy4HbeM60OzKBk+5TVdiSkiYaGwpIw/v5PNc59vIqFxDM9eM5Sze7byO1ZYU4GLiO8+XbuHlLkBtu0v4soRHZl2QS8a1lc9nYz+hETENwcLS7n7rUxeXbaNLi0b8Or1IxjWubnfsSKGClxEfLEoYxe3vJ7BvoISfnFWV24Y3Z2YutE9fMprKnARqVa5+UeGTy1M30mfhMY8e/VQ+rVr4nesiKQCF5FqYWbMXbGdO9/MpKiknBvP78nUM7pQt3bNGT7lNRW4iFS57QeKuGluOh+tyWVIx2bcN6U/3Vo19DtWxFOBi0iVCQaNF7/czH1vZ2HAHRP6csVpHalVQ4dPeU0FLiJVYn3uIVLSAny9aT8/6N6SeyZp+JTXVOAi4qnS8iBPfrKBh95bS2zd2jxw8QCmDG6ny+CrgApcRDyTsf0g09MCrNqRx9h+bbhjYl9aNdLwqaqiAheRkBWXlvO3D9byxEcbaBZXj8cvG8zYpAS/Y0U9FbiIhGTZpn1MSwuwIbeAHw1pz8xxvWkap+FT1UEFLiKVcuhwGX9elMULX2ymbZNYXrh2GGf0iPc7Vo2iAheR7+2jNbncNDedHQeLuGpEJ248vycNNHyq2ulPXERO2YHCEma9uZq0FdvoGt+A164fQXInDZ/yiwpcRE7J2+k7ueX1VewvLOHXZ3fj1+d00/Apn6nAReSEcvKKufX1VSxatYu+bRvz/LVD6dtWw6fCgQpcRI7JzEhdvo1Zb2ZSXBZk+gW9+NkPOlNHw6fChgpcRP7L1n2F3DQvnU/W7mFYp+bMnpJEl3gNnwo3IRW4c+73wHWAAenANWZW7EUwEal+5UHjhaWb+PM72Thg1sS+XDZcw6fCVaUL3DnXDvgt0MfMipxzrwKXAM95lE1EqtG6nHymp6WzfPN+zuwRzz2Tk2jXNNbvWHICoW6h1AFinXOlQBywI/RIIlKdSsuD/P2j9fzP++uIq1+bv/6/AUwapOFTkaDSBW5m251zDwBbgCJgsZktPvp5zrmpwFSAxMTEyp5ORKpAxvaD3JgaYPXOPMb1T+D2H/YlvlF9v2PJKar0y8nOuWbARKAz0BZo4Jy7/OjnmdkcM0s2s+T4eF1mKxIOikvLmf12FhMf/Yy9hw7z9yuG8OhPBqu8I0woWyhjgI1mlgvgnJsLjARe9CKYiFSNLzfsJWVuOhv3FPDj5A7cNK43TWLr+h1LKiGUAt8CnOaci+PIFspoYJknqUTEc/nFpdy/KJt/fLGZDs1jeem64Yzq1tLvWBKCUPbAv3TOpQIrgDLgG2COV8FExDtLsnO4eW46O/OKuXZUZ/50fg/i6ukykEgX0t+gmd0G3OZRFhHx2P6CEma9mcncb7bTvVVD0n4xksGJzfyOJR7R/4JFopCZsTB9J7e9voqDRaX89pxu/OqcbtSvo+FT0UQFLhJlducVM3N+Bu9m7qZ/+ya8eN1weic09juWVAEVuEiUMDNeXbaVuxaupqQsyE0X9uLaURo+Fc1U4CJRYMveQlLmBvh8/V6Gd27OfVP606llA79jSRVTgYtEsPKg8dznm3jgnWxq13LcPakflw5N1PCpGkIFLhKh1uzOZ1pqgG+3HuCcXq24e1I/Eppo+FRNogIXiTAlZUEe/3A9jyxZS8P6dXj4koFMGNBWw6dqIBW4SARZufUA09MCZO3KZ8KAttz2wz60aKj5JTWVClwkAhSVlPPge2t46pMNtGoUw1NXJjOmT2u/Y4nPVOAiYW7p+r3MmBtg095CLh2WyIwLe9E4RsOnRAUuErbyikuZ/XYWL3+5hY4t4nj5Z8MZ2VXDp+T/qMBFwtD7q3dz87wMcvKL+dkPOvOHc3sSW0+Xwct/UoGLhJG9hw5zxxuZLFi5g56tG/HEFUMY2KGp37EkTKnARcKAmbFg5Q7ueCOT/OJSfj+mB784qyv16ugyeDk+FbiIz3YeLGLmvAzez8phQIem3D+lPz3bNPI7lkQAFbiIT4JB459fb+Xet1ZTGgwyc1xvrhnVmdq6DF5OkQpcxAeb9hSQMjfAFxv2MaJLC2ZPSaJjCw2fku9HBS5SjcrKgzz72Sb+8m42dWvVYvbkJH48tIMug5dKUYGLVJOsXXlMTw2wcttBxvRuzV0X9aNNkxi/Y0kEq3SBO+d6Av/6zkNdgFvN7KFQQ4lEk8Nl5Ty6ZD2PLVlHk9i6/O3SQYzvn6BVt4QslLvSZwMDAZxztYHtwDxvYolEh2+27Gd6WoA1uw8xaVA7bhnfh+YN6vkdS6KEV1soo4H1ZrbZo+OJRLTCkjL+sngNz3y2kTaNY3jm6mTO6aXhU+Itrwr8EuCVY/2Cc24qMBUgMTHRo9OJhK/P1+0hZW46W/YVcvlpiUy/oBeNNHxKqoAzs9AO4Fw9YAfQ18x2n+i5ycnJtmzZspDOJxKuDhaVcu9bq/nn11vp1CKO2VP6c1qXFn7HkijgnFtuZslHP+7FCnwssOJk5S0SzRav2sXM+RnsOXSY68/swu/H9CCmroZPSdXyosAv5TjbJyLRbs+hw9y+YBVvBnbSq00jnroqmf7tm/odS2qIkArcORcHnAtc700ckchgZsz/djt3vJFJ4eFy/nhuD35+Vlfq1tbwKak+IRW4mRUC2uSTGmXHgSJunpfOkuxcBiUeGT7VvbWGT0n105WYIqcoGDRe+moL972dRXnQuHV8H64a2UnDp8Q3KnCRU7Ah9xApael8tWkfp3dryb2Tk+jQPM7vWFLDqcBFTqCsPMhTn27kwXfXUL9OLe7/UX8uHtJel8FLWFCBixxH5o48pqWtJGN7Huf3bc2sif1o1VjDpyR8qMBFjnK4rJxHPljH4x+up2lcXR67bDBj+7XRqlvCjgpc5DuWbz4yfGpdziEmD27HLeP60EzDpyRMqcBFgILDZTywOJvnPt9E2yaxPHfNUM7q2crvWCInpAKXGu+TtbnMmJvOtv1FXDWiIzde0IuG9fWtIeFPX6VSYx0sLOWuhZm8tnwbXeIb8NrPRzC0U3O/Y4mcMhW41EiLMnZxy+sZ7Cso4ZdndeW3o7tr+JREHBW41Cg5+cXcvmAVb6Xvok9CY569eij92jXxO5ZIpajApUYwM9JWbGfWm5kUlZZz4/k9mXpGFw2fkoimApeot21/ITfNy+DjNbkM6diM+6b0p1urhn7HEgmZClyiVjBo/OOLzdy3KAuAOyb05YrTOlJLw6ckSqjAJSqtzz3E9NQAyzbv54we8dwzqR/tm2n4lEQXFbhEldLyIHM+3sDD768ltm5tHrh4AFMGt9Nl8BKVVOASNTK2H2R6WoBVO/K4MKkNt0/oS6tGGj4l0UsFLhGvuLSc/3l/LX//eAPN4urxxOWDuaBfgt+xRKqcClwi2teb9jE9NcCGPQVcPKQ9M8f1oUlcXb9jiVSLUG9q3BR4CugHGHCtmS31IJfICR06XMb9i7J4Yelm2jeL5YVrh3FGj3i/Y4lUq1BX4A8Di8zsR865eoBe5pcq99GaXG6am86Og0VcPbITN57fkwYaPiU1UKW/6p1zjYEzgKsBzKwEKPEmlsh/O1BYwp1vZjJ3xXa6xjcg9ecjGNJRw6ek5gpl2dIFyAWedc4NAJYDN5hZwXef5JybCkwFSExMDOF0UlOZGW9n7OLW1zM4UFjKr8/uxq/P6abhU1LjhTIIog4wGHjczAYBBUDK0U8yszlmlmxmyfHx2qOU7ycnr5ifv7icX760gjZNYnj916P40/k9Vd4ihLYC3wZsM7MvK36eyjEKXKQyzIzXlm/jrjczOVwWJGVsL647vTN1NHxK5H9VusDNbJdzbqtzrqeZZQOjgUzvoklNtXVfITPmpvPpuj0M69Sc2VOS6BKv4VMiRwv1pfvfAC9VvANlA3BN6JGkpioPGi8s3cT9i7Kp5WDWRf24bFiihk+JHEdIBW5m3wLJ3kSRmmxdTj7TUgOs2HKAs3rGc/ekJNo1jfU7lkhY05tnxVel5UGe+HA9f/tgHXH1a/Pgjwdw0UANnxI5FSpw8U36toPcmLqSrF35jOufwB0T+tKyYX2/Y4lEDBW4VLvi0nIefG8NT368gZYN6/P3K4Zwft82fscSiTgqcKlWX27YS8rcdDbuKeCSoR2YcWFvmsRq+JRIZajApVrkF5dy36IsXvxiCx2ax/LSdcMZ1a2l37FEIpoKXKrckqwcbpqXzq68Yn56emf+eF4P4urpS08kVPoukiqzr6CEO99Yxfxvd9C9VUPSfjGSwYnN/I4lEjVU4OI5M+PNwE5uX7CKg0Wl/HZ0d351dlfq19H8EhEvqcDFU7vzirl5Xgbvrd5N//ZNePG64fROaOx3LJGopAIXT5gZ//p6K3e/tZqSsiA3X9iba0Z10vApkSqkApeQbdlbSMrcAJ+v38vwzs25b0p/OrVs4HcskainApdKKw8az362kQcWZ1OnVi3umZTEJUM7aPiUSDVRgUulZO/KZ1pagJVbD3BOr1bcPakfCU00fEqkOqnA5XspKQvy2IfreHTJOhrF1OXhSwYyYUBbDZ8S8YEKXE7Zyq0HmJYaIHt3PhMHtuXW8X1ooeFTIr5RgctJFZWU89d3s3n60420ahTDU1cmM6ZPa79jidR4KnA5oaXr95IyN8DmvYX8ZHgiKWN70ThGw6dEwoEKXI4pr7iUe9/K4pWvttCxRRwv/2w4I7tq+JRIOFGBy395L3M3N89PJzf/MFPP6MLvx/Qgtp4ugxcJNyEVuHNuE5APlANlZqb7Y0awvYcOc8cbmSxYuYNebRox54pkBnRo6ncsETkOL1bgZ5vZHg+OIz4xMxas3MHtC1Zx6HAZvx/Tg1+c1ZV6dXQZvEg40xZKDbfzYBEz52XwflYOAzs05f4f9adH60Z+xxKRUxBqgRuw2DlnwN/NbM7RT3DOTQWmAiQmJoZ4OvFKMGi88vUW7n0ri7JgkJnjenPNqM7U1mXwIhEj1AIfZWY7nHOtgHedc1lm9vF3n1BR6nMAkpOTLcTziQc27ikgJS3Alxv3MbJrC2ZP7k9iizi/Y4nI9xRSgZvZjoqPOc65ecAw4OMT/y7xS1l5kGc+28hfFq+hXu1azJ6cxI+HdtBl8CIRqtIF7pxrANQys/yKz88D7vQsmXhq9c48pqcFCGw7yJjerbnron60aRLjdywRCUEoK/DWwLyK1Vsd4GUzW+RJKvHM4bJyHl2ynseWrKNJbF0e+ckgxiUlaNUtEgUqXeBmtgEY4GEW8diKLfuZnhpgbc4hJg1qx63j+9CsQT2/Y4mIR/Q2wihUWFLGXxav4ZnPNtKmcQzPXj2Us3u18juWiHhMBR5lPlu3h5S5AbbuK+Ly0xKZfkEvGmn4lEhUUoFHiYNFpdyzcDX/WraVzi0b8K+ppzG8Swu/Y4lIFVKBR4HFq3Yxc34GewtK+PmZXfndmO7E1NXwKZFopwKPYLn5h7n9jVUsDOykd0Jjnr5qKEntm/gdS0SqiQo8ApkZ877Zzp1vZlJ4uJw/ndeD68/sSt3aGj4lUpOowCPM9gNF3DwvnQ+zcxmceGT4VLdWGj4lUhOpwCNEMGi89OVmZr+dRdDgth/24coRnTR8SqQGU4FHgA25h0hJS+erTfs4vVtL7p2cRIfmGj4lUtOpwMNYWXmQJz/ZyIPvrSGmTi3u/1F/Lh7SXpfBiwigAg9bmTvymJa2kozteZzftzWzJvajVWMNnxKR/6MCDzPFpeU88sE6nvhoPU3j6vH4ZYMZm5TgdywRCUMq8DCyfPM+pqUGWJ9bwJTB7bllfG+axmn4lIgcmwo8DBQcLuPP72Tz/NJNtG0Sy/PXDuPMHvF+xxKRMKcC99nHa3KZMTedHQeLuPK0jtx4QS8a1tdfi4icnJrCJwcLS5m1MJPU5dvoEt+AV68fwdBOzf2OJSIRRAXug0UZO7nl9VXsKyjhl2d15bejNXxKRL4/FXg1yskv5rbXV/F2xi76JDTm2auH0q+dhk+JSOWowKuBmZG6fBt3LVxNUWk5N57fk6lndNHwKREJiQq8im3dV8hN89L5ZO0ekjs2Y/aU/nRr1dDvWCISBUIucOdcbWAZsN3MxoceKToEg8YLSzdx/zvZOODOiX25fHhHamn4lIh4xIsV+A3AaqCxB8eKCutyDpGSFmDZ5v2c0SOeeyb1o30zDZ8SEW+FVODOufbAOOBu4A+eJIpgpeVB5ny8gYffW0tsvdr85eIBTB7cTsOnRKRKhLoCfwiYBhz3jgLOuanAVIDExMQQTxe+MrYfZFpqgMydeVyY1IY7JvQjvlF9v2OJSBSrdIE758YDOWa23Dl31vGeZ2ZzgDkAycnJVtnzhavi0nIefn8tcz7eQPMG9Xji8sFc0E/Dp0Sk6oWyAh8FTHDOXQjEAI2dcy+a2eXeRAt/X2/ax/TUABv2FHDxkPbMHNeHJnF1/Y4lIjVEpQvczGYAMwAqVuB/qinlfehwGfcvyuKFpZtp3yyWf/x0GD/oruFTIlK99D7w7+nD7BxunpfBjoNFXDOqE386rycNNHxKRHzgSfOY2YfAh14cK1ztLyhh1sJM5q7YTrdWDUn9+UiGdGzmdywRqcG0dDwJM+Ot9F3ctiCDA4Wl/Oacbvz6nG7Ur6PhUyLiLxX4CeTkFTNzfgaLM3eT1K4JL1w7nD5tdb2SiIQHFfgxmBmvLdvGrIWZlJQFSRnbi+tO70wdDZ8SkTCiAj/K1n2FzJibzqfr9jCsc3NmT06iS7yGT4lI+FGBVygPGs9/vok/v5NN7VqOuy7qx0+GJWr4lIiELRU4sHZ3PtPSAnyz5QBn9YznnklJtG0a63csEZETqtEFXlIW5ImP1vPIB+toUL82D/14IBMHttXwKRGJCDW2wAPbDjAtNUDWrnzG90/g9gl9adlQw6dEJHLUuAIvLi3nwXfX8OQnG4hvVJ85VwzhvL5t/I4lIvK91agC/2LDXlLSAmzaW8ilwzqQMrY3TWI1fEpEIlONKPD84lJmv53FS19uIbF5HC9fN5yR3Vr6HUtEJCRRX+AfZO3m5nkZ7M4r5rrTO/OH83oQVy/q/7NFpAaI2ibbV1DCnW+sYv63O+jeqiGP/WIkgxI1fEpEokfUFbiZ8UZgJ7cvWEVeUSk3jO7OL8/uquFTIhJ1oqrAdx08MnzqvdW7GdC+Cff9bDi92mj4lIhEp6gocDPjn19v5Z6FqykNBrn5wt5ce3pnausyeBGJYhFf4Jv3FpCSls7SDXs5rUtzZk/uT6eWDfyOJSJS5SK2wMuDxrOfbeSBxdnUrVWLeyYlccnQDho+JSI1RkQWePauI8OnVm49wOherbhrUj8Smmj4lIjULJUucOdcDPAxUL/iOKlmdptXwY6lpCzIYx+u49El62gUU5eHLxnIhAEaPiUiNVMoK/DDwDlmdsg5Vxf41Dn3tpl94VG2//Dt1gNMTw2QvTufiQPbcuv4PrTQ8CkRqcEqXeBmZsChip/WrfhhXoQ62t/eX8uD762hVaMYnr4qmdG9W1fFaUREIkpIe+DOudrAcqAb8KiZfXmM50wFpgIkJiZW6jyJLeK4ZFgiKWN70ThGw6dERADckYV0iAdxrikwD/iNmWUc73nJycm2bNmykM8nIlKTOOeWm1ny0Y97cpt1MzsAfAhc4MXxRETk5Cpd4M65+IqVN865WGAMkOVRLhEROYlQ9sATgOcr9sFrAa+a2ZvexBIRkZMJ5V0oAWCQh1lEROR78GQPXEREqp8KXEQkQqnARUQilApcRCRCeXIhzymfzLlcYHMlf3tLYI+HcapaJOWNpKwQWXkjKStEVt5Iygqh5e1oZvFHP1itBR4K59yyY12JFK4iKW8kZYXIyhtJWSGy8kZSVqiavNpCERGJUCpwEZEIFUkFPsfvAN9TJOWNpKwQWXkjKStEVt5IygpVkDdi9sBFROQ/RdIKXEREvkMFLiISocK+wJ1zzzjncpxzx71RRLhwznVwzi1xzq12zq1yzt3gd6YTcc7FOOe+cs6trMh7h9+ZTsY5V9s5941zLuwnXzrnNjnn0p1z3zrnwvpOJs65ps65VOdcVsXX7wi/Mx2Pc65nxZ/pv3/kOed+53eu43HO/b7i+yvDOfdKxQ3hvTl2uO+BO+fO4Mi9N18ws35+5zkR51wCkGBmK5xzjThyu7mLzCzT52jH5JxzQIPv3pgauKGqbkztBefcH4BkoLGZjfc7z4k45zYByWYW9hebOOeeBz4xs6ecc/WAuIobtYS1inHW24HhZlbZiwSrjHOuHUe+r/qYWZFz7lXgLTN7zovjh/0K3Mw+Bvb5neNUmNlOM1tR8Xk+sBpo52+q47MjquXG1F5wzrUHxgFP+Z0lmjjnGgNnAE8DmFlJJJR3hdHA+nAs7++oA8Q65+oAccAOrw4c9gUeqZxznTgyL/2/bvQcTiq2JL4FcoB3j3Vj6jDyEDANCPqc41QZsNg5t7zi5t7hqguQCzxbsT31lHOugd+hTtElwCt+hzgeM9sOPABsAXYCB81ssVfHV4FXAedcQyAN+J2Z5fmd50TMrNzMBgLtgWHOubDcpnLOjQdyzGy531m+h1FmNhgYC/yqYjswHNUBBgOPm9kgoABI8TfSyVVs9UwAXvM7y/E455oBE4HOQFuggXPucq+OrwL3WMVechrwkpnN9TvPqYqAG1OPAiZU7Cv/EzjHOfeiv5FOzMx2VHzMAeYBw/xNdFzbgG3f+ddXKkcKPdyNBVaY2W6/g5zAGGCjmeWaWSkwFxjp1cFV4B6qeFHwaWC1mf3V7zwnE0k3pjazGWbW3sw6ceSfzR+YmWcrGa855xpUvJBNxXbEeUBYvpPKzHYBW51zPSseGg2E5QvvR7mUMN4+qbAFOM05F1fRD6M58tqYJ8K+wJ1zrwBLgZ7OuW3OuZ/6nekERgFXcGR1+O+3OF3od6gTSACWOOcCwNcc2QMP+7fnRYjWwKfOuZXAV8BCM1vkc6YT+Q3wUsXXwkDgHn/jnJhzLg44lyMr2rBV8a+aVGAFkM6RzvXskvqwfxuhiIgcW9ivwEVE5NhU4CIiEUoFLiISoVTgIiIRSgUuIhKhVOAiIhFKBS4iEqH+P0QbgQAOcSdUAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "xpoints = [1, 8]\n",
    "ypoints = [3, 10]\n",
    "\n",
    "plt.plot(xpoints, ypoints)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "id": "659c3924",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoI0lEQVR4nO3da3iU9bku8PvJERIICZCEQ0iiCCaAEiAiag+W4Kq1tdW2HtoK7L27L7vWanfVZa+17NH2y1r2YLWfurenVUBbtfWAtVVrUaxowEwwQZCTwgwhCSFhJifIcebZH2YGIiaTOb+n+3dduTIzmcw8JG8e3nnmvd+/qCqIiMh6MowugIiI4sMGTkRkUWzgREQWxQZORGRRbOBERBaVlc4nmz17tlZWVqbzKclBGhsbu1S12Ijn5rZNqTTRtp3WBl5ZWQmXy5XOpyQHERGPUc/NbZtSaaJtmyMUIiKLYgMnIrIoNnAiIotiAycisig2cCIii5q0gYvIYyJyUkT2jrltpoi8KiKHQ5+LUlsmUWqISKaIvCsiL4auc9smy4hmD/x3AK4977Z7AGxT1UUAtoWuE1nRHQD2j7nObZssY9IGrqr/AOA97+YvAdgUurwJwA3JLYvo43Yc7sL/feNDDI36k/J4IlIG4PMAHhlzM7dtSrvfbv8QjR5fzN8X7wy8VFXbASD0uWSiO4rI7SLiEhFXZ2dnnE9HBGxtasX/e+ND5GQm7a2bBwH8O4DAmNu4bVNavXm4Ez9/+QD+3NwW8/em/E1MVX1IVWtVtba42JCUM9lEo8eHVRUzISIJP5aIfAHASVVtjPcxuG1TorrPDON7f2zGRSXTcM/nqmL+/ngbeIeIzAWA0OeTcT4OUVS6+odwpOs0LqtM2nuKVwH4ooi4ATwJYK2IPA5u25QmqoofPPcevKeH8eAtNZiSnRnzY8TbwF8AsDF0eSOArXE+DlFUXO7gfLA2SQ1cVb+vqmWqWgngVgCvqept4LZNafLs7lb89b0TuOuaxVg2f0ZcjxHNYYR/AFAP4GIROS4i3wRwH4BrROQwgGtC14lSxuX2IicrI+4NPQbctinlWrxncO8L+7C6cia+9amFcT/OpGcjVNWvTfCluriflShGLo8PNWWFyM2K/WXmZFR1O4DtocunwG2bUsgfUNz9dDMA4P6blyMzI/73dJjEJNMbGPZjb2sPViVv/k1kmIf+cQTvuL346ReXYsHMvIQeiw2cTK+ppRujAU3mG5hEhtjb2oNfv3oQn1s2B19ZOT/hx2MDJ9NzuYM5slXlMw2uhCh+gyN+3PVUE4rycvCfN16SlMNh07oiD1E8XB4fLi6djhl52UaXQhS3+146gMMn+7H5f61GUX5OUh6Te+Bkav6AYrfHx/k3Wdqbhzvxu7fd+B9XVuJTi5MX+mIDJ1M7eKIPfUOjnH+TZSWatoyEDZxMrdETnH/XVnD+Tdajqvjhc3txqj/+tGUkbOBkag1uH+YUTEFZ0VSjSyGK2XPvtuIv77UnlLaMhA2cTM3l9mJVZVFS3rEnSqcW7xncu3UfLqsswj9/Ov60ZSRs4GRard0DaOsZxGUVnH+TtYTTlgrg1zfXJJS2jISHEZJphY//rq3k/JusJZy2/NVNyxNOW0bCPXAyLZfbh/ycTFTNmW50KURRS3baMhI2cDKtBrcXKyuKkJW8FXiIUioVactI+JdBptQ7OIKDHX08fJAs5ecvB9OWv7xpedLSlpGwgZMp7fb4oAoGeMgy3jzcif9+K5i2/HQS05aRsIGTKbncPmRmCGrKC40uhWhSqUxbRsIGTqbU4PZi6bwC5OXwQCkyt1SnLSNhAyfTGR4NoPl4N+ffZAmpTltGwgZOprOvrQeDIwHOv8n0jvtSn7aMhA2cTCe8Aj1PIUtm5g8o/i0NactIOGAk02lwe1ExKw8l06cYXQrRhB76xxG8czT1actIuAdOpqKqaPT4OP8mU0tn2jISNnAylaNdp3Hq9DBqOT4hk0p32jISjlDIVMLzb76BSWYVTltuSuLalvHiHjiZisvjRVFeNhYWT0v5c4nIFBF5R0SaRWSfiPwsdPtPRaRVRJpCH9elvBiyhHDacuMVFWlLW0bCPXAyFZfbh1UVM9P1snQIwFpV7ReRbAA7ROSl0NceUNVfpaMIsoZw2nJhcT7u+Vy10eUA4B44mUhX/xCOdJ1O2/xbg/pDV7NDH5qWJydLGZu2/M2tKzA1J31py0jYwMk0jJh/i0imiDQBOAngVVXdFfrSd0Rkj4g8JiLjFiQit4uIS0RcnZ2d6SqZDGBk2jISNnAyjUaPFzlZGWn9A1FVv6rWACgDsFpElgH4LYCFAGoAtAO4f4LvfUhVa1W1trjY+HkopYbRactI2MDJNBrcPtSUFSI3K/0vT1W1G8B2ANeqakeosQcAPAxgddoLIlMwQ9oyEjZwMoWBYT/2tvakNT4vIsUiUhi6PBXAOgAHRGTumLvdCGBv2ooiU3n4zWDa8t7rlxiWtoyER6GQKTS1dGM0oOk+/nsugE0ikongzszTqvqiiGwRkRoE39B0A/hWOosic9jb2oP7/3YQ1y6dg6+uKjO6nHGxgZMpNHqCK9CvKk9fhF5V9wBYMc7t69NWBJnSR9KWXzY2bRkJGziZQoPbh8Wl0zAjL9voUog+kracaXDaMhLOwMlw/oBit8eH2kqewIqMZ7a0ZSQJNXARuSsUQd4rIn8QEZ7/k2J2qKMPfUOjPP8JGc6MactI4m7gIjIfwHcB1KrqMgCZAG5NVmHkHC53cP7NU8iSkcyatowk0RFKFoCpIpIFIA9AW+IlWcdrBzrw5mEm8BLV4PahtCAXZUVTjS6FHMysactI4m7gqtoK4FcAjiGYVutR1b+dfz+7xo0Hhv2488km/OC596DK02ckwuX2orYybSewIvqYcNqytsJ8actIEhmhFAH4EoALAMwDkC8it51/P7vGjbc2taJ3cBQt3gF8cLJ/8m+gcbV2D6CtZxCXVXD+TcYYm7Z84BbzpS0jSWSEsg7AUVXtVNURAM8CuDI5ZZmbqmJTvefsS/6/7z9pcEXWdXb+zSNQyCBmT1tGkkgDPwZgjYjkSfC1bx2A/ckpy9waPT7sb+/Fv159EZbNL8C2/R1Gl2RZLrcP+TmZqJoz3ehSyIH2tZk/bRlJIjPwXQD+BGA3gPdCj/VQkuoytU31HkyfkoUbVszD2qpS7D7mg/f0sNFlWVKD24uVFUXIymQkgdIrnLYsNHnaMpKE/mpU9V5VrVLVZaq6XlWHklWYWZ3sHcRL77XjplULkJeThXXVJQgo8PoBjlFi1Ts4goMdfTx8kAzx85cP4FBHP3751UtNnbaMhLs9MfrDOy0YDSjWX1EBAFg2bwZKpufiNTbwmO32+KAKrkBPaTc2bXn1xSVGlxM3NvAYjPgD+P07HnxqcTEumJ0PAMjIENRVl+CNQ50YHg0YXKG1uNw+ZGYIahYUGl0KOYjV0paRsIHH4G/7OtDRO4QNayo+cvvaqlL0D43inaNegyqzJpfHi6XzCpCfy3OqUXqoKn74vLXSlpGwgcdgc70bZUVT8Zmqj77k+sRFs5GblYG/82iUqA2PBtDU0s35N6XV802t+Msea6UtI2EDj9KBE73YddSL29ZUfOxA/6k5mbjqotnYdqCDqcwo7WvrweBIgPNvSpvjvjP4yfPWS1tGwgYepS31HuRmZeCW2gXjfr2uuoSpzBiEV6CvZQKT0iCctgyoWi5tGQkbeBR6B0fw3LutuH75PBRNcLhRXVUpAKYyo+XyeFExKw8lBTwDMaVeOG350y8utVzaMhI28Cg803gcZ4b92HhF5YT3mTNjCpbOYyozGqoKl9vH+TelhdXTlpGwgU8iEFBsqfegZkEhLimL/KZHXTVTmdE42nUap04Pc/5NKWeHtGUkbOCTeOvDLhzpOo2NV1ZMet9wKnP7QY5RIgnPv7kCD6XaL14+aPm0ZSRs4JPY9LYHs/JzcN0lcye9bziVuY1z8IhcHi+K8rKxsHia0aWQjb15uBOPvXUUGyyetoyEDTyCFu8ZvHagA7euXoDcrMkP+GcqMzoutw+rKops93KWzGNs2vL7Fk9bRsIGHsETu44BAL5++eTjkzCmMiPr6h/Cka7TPP83pczYtOWDt1g/bRkJG/gEBkf8eKrhGK5ZUor5hdGv1RhOZW47wKNRxtPoMc/8W0SmiMg7ItIsIvtE5Geh22eKyKsicjj02fhiKWpj05aTHXhgdWzgE3hxTzt8Z0awIcKhg+M5m8rcf5KpzHG43F7kZGWYJcY8BGCtqi4HUAPgWhFZA+AeANtUdRGAbaHrZAF2TFtGwgY+gS31biwszseVC2fF/L111SU45j3DVOY4Gtw+LC+bEdV7CqmmQeFfUnboQxFc63VT6PZNAG5If3UUK39AcbcN05aRsIGPo6mlG83He7Dhisq43mhbGzrZFVOZHzUw7Mfe1h5Tzb9FJFNEmgCcBPBqaKWpUlVtB4DQ53EPYRCR20XEJSKuzs7OtNVM43v4zSPYddSLe22WtoyEDXwcm+vdyM/JxJdXzo/r++fOmMpU5jiaj3djNKCmmH+HqapfVWsAlAFYLSLLYvjeh1S1VlVri4uLU1YjTS6ctvzs0lLcZLO0ZSRs4Oc51T+EF5vb8eWVZZg+JTvux2Eq8+PCK9CvKjfPHniYqnYD2A7gWgAdIjIXAEKf+VLKxMamLf/ry5c66vBUNvDzPOVqwbA/gA1XRH/o4HiYyvy4BrcPi0unYUZe/P8xJpOIFItIYejyVADrABwA8AKAjaG7bQSw1ZACKSp2T1tGwgY+hj+geGLnMVxx4SwsKp2e0GMxlflR/oBit8dnqvk3gLkAXheRPQAaEJyBvwjgPgDXiMhhANeErpMJ7TjcZfu0ZSRcy2qMbfs70No9gB9/IfHkVkaGYG1VCV7c047h0QByspz9f+Whjj70DY2abf69B8CKcW4/BaAu/RVRLJyStozE2V3lPJvrPZg7YwrWVZcm5fHqqpnKDAvPv3kKWUqGcNqyq3/I9mnLSNjAQz442Y8dH3ThG5eXIyszOT8WpjLPaXD7UFqQi7Ki6FOtRBMJpy3vXLfI9mnLSNjAQx7f6UF2puCWy8qT9phMZZ7TGJp/O+kIAUqNsWnLf7n6IqPLMRQbOID+oVE803gcn79kLoqn5yb1sddWMZXZ2j2A1u4BXMb1LylBTkxbRsIGDuC5d1vRNzSK9TGe9yQaddVMZZ6df5vrCBSyoEccmLaMxPENXFWxpd6NZfMLsLK8MOmPH05lvubgObjL7UN+Tiaq5iR2aCY52/ttvfiVA9OWkTi+ge884sWhjn5sWBPfeU+iUVddikaPDz6HpjJdHh9WVhQl7c1hcp7BET/ufOpdR6YtI3H8X9SWnW4U5mXjizXzUvYc4VTm6w5MZfYOjuDAiV4ePkgJCactf+HAtGUkjm7g7T0DeGVfB26uXYAp2ak7jnTZvBkodmgqc7fHB1VwBXqK29i05WccmLaMxNEN/A+7jiGgittiWDItHhkZgroqZ66V6XL7kJkhqFlQaHQpZEFMW0bm2AY+PBrA799pwWcuLkH5rNS/mx1OZTa4nZXKdHm8WDqvAPm5PGsDxUZV8SOmLSNybAN/aW87uvqHEj7rYLTCqcy/O+gc4cOjATS1dGMVj/+mOGxtasOLTFtG5NgGvrneg8pZefjUovSciH9qTiauXDjLUanMfW09GBwJ4DIe/00xOu47gx8/vxerHLK2ZbwSauAiUigifxKRAyKyX0SuSFZhqbS3tQeNHh9uW1OBjDQmueqqSx2VygyvQF/LPXCKwUfSljfX8PDTCBL9yfwGwMuqWgVgOYD9iZeUelvqPZiSnYGbVi1I6/M6LZXZ4PaiYlYeSgqmGF0KWcjYtGU63p+ysrgbuIgUAPgUgEcBQFWHQ8tSmVr3mWFsbW7FjSvmp31lGCelMlUVLreP82+KCdOWsUlkD/xCAJ0A/ltE3hWRR0Qk//w7mW3l7j+6jmNwJID1ayoNeX6npDKPdp3GqdPDnH9T1Ji2jF0iDTwLwEoAv1XVFQBOA7jn/DuZaeXuQECxZacHl1UWYcm8AkNqqKtyRirTFZp/m2kFHjK3X77CtGWsEmngxwEcV9Vdoet/QrChm9YbhzpxzHsmJWcdjNYl852RynS5vSjKy8bC4mlGl0IWsONwFx7dcRTr1zBtGYu4G7iqngDQIiIXh26qA/B+UqpKkc31bhRPz8W1S+cYVkM4lfkPm6cyw/NvvgymyYTTlhcW5+MH1zFtGYtEj0L5PwCeCK3qXQPgPxOuKEU8p05j+6FOfG11ueELDNdVl6LPxqnMU/1DONJ1muf/pkmNTVv+hmnLmCWUb1bVJgC1ySkltR7f6UGmCL5xefKWTIvXVRfNQk4olXnVRbONLifpOP+maIXTlt/7p8VMW8bBEUfIDwz78VRDCz67dA5KTXBMcl5OFq6ycSrT5fYiJysDy+bzD5Im1to9gB9vZdoyEY5o4C80t6J3cDRt5z2Jhp1TmQ1uH5aXzUBuFl8O0/j8AcW/PdWEQIBpy0TY/qemqtj0tgcXl07H6gvMM5MNpzK3HbDX0SgDw37sa+uxxPxbRBaIyOuh00DsE5E7Qrf/VERaRaQp9HGd0bXazdm05fVMWybC9g189zEf3m/vxYYrK0x1REQ4lbnNZmcnbD7ejRG/WmX+PQrgblWtBrAGwLdFZEnoaw+oak3o46/GlWg/H0lb1jJtmQjbN/BNb3swPTcLN9TMN7qUj6mrKrFdKjO8Av3KcvM3cFVtV9Xdoct9CJ7Lx3wbio0wbZlctm7gJ/sG8dLedny1tsyUCwrUVZfaLpXZ4PZhcek0FOZZK0knIpUAVgAIB9O+IyJ7ROQxERn3fyOznSbCCpi2TC5bN/An32nBiF+xfo153rwc62wq0yZzcH9AsfuYzxLz77FEZBqAZwDcqaq9AH4LYCGC2YZ2APeP931mOk2EFbz1AdOWyWbbBj7iD+D3u47hk4tm40KTxrnPpjIP2iOVeaijD32Do1aZfwMARCQbweb9hKo+CwCq2qGqflUNAHgYwGoja7SDnjMjuPtppi2TzbYN/NX3O3CidxAbDDzvSTTWVpXYJpUZnn/XVlhjD1yCA9hHAexX1V+PuX3umLvdCGBvumuzE1XFD59/L7S2ZQ3TlklkvsFwkmyud2N+4VSsrTL3S7VPLJptm1Smy+NDaUEuyoqmGl1KtK4CsB7AeyLSFLrtBwC+JiI1ABSAG8C3jCjOLsamLS8tKzS6HFuxZQM/eKIPO4948R/XViEzjUumxWNsKvMnX1hi6XflXe7g/Nsq/wZV3QFgvGJ52GCSMG2ZWrYcoWzZ6UZOVgZuuSy9S6bFK5zK/LDTuqnM1u4BtHYPcP1LOisQUNz9NNOWqWS7n2jv4Aie3d2K6y+dZ5nDlOywVmZ4/s0VeCjskR1HsPMI05apZLsG/mzjcZwZ9mPjleY8dHA8c2dMxZK51k5lNnp8yM/JRNWc6UaXQiawv70Xv3rlEP5pCdOWqWSrBq6q2LzTg+ULCi33Zsm6amunMhvcPqysKOLLZAqmLZ9swoy8bNz3FaYtU8lWf21vfXAKRzpPY6OJzjoYLSunMnsHR3DgRC9XoCcAwbTlwY4+pi3TwFYNfFO9GzPzc3DdJXMnv7PJWDmVudvjgyrn38S0ZbrZpoEf953Btv0duPWyBZiSbb2gQEaGYO3F1kxlNnp8yMwQ1CwoNLoUMhDTlulnmwb+xK5jAIBvmPS8J9Goq7ZmKrPB7cXSeQWmPGEYpc+Ptu5l2jLNbNHAB0eCS6atqy7F/ELLpAA/Zmwq0ypG/AE0tXRz/u1wW5ta8efmNtxRt8hyBxBYmS0a+F/2tMN7etj05z2ZjBXXytzX1ovBkQDn3w7W2j2AHz0fTFv+y9VMW6aTLRr45p0eXFicj6summV0KQmzWirz3AmsuAfuRExbGsvyP+3mlm40t3RjwxpzLZkWr/DJt6ySymxwe1E+Mw8lBVOMLoUMwLSlsSzfwDfXe5Cfk4mvrLJH2mteoXVSmaoaOoEV976diGlL41m6gXtPD+PPe9pw48r5mD4l2+hyksYqqUz3qTM4dXqY828HCqctC6Zm47++fIktXv1akaUb+FMNLRgeDVj+zcvzhVOZ2w+Ze4zScPYEVtwDd5pfhdKWv7zpUsyalmt0OY5l2QbuDyge3+nBmgtnYnGpvU6gFE5lmn0O7nJ7UZiXjQtnm3PJOkqNtz7owiNMW5qCZRv4awdOorV7ABtttvcNWCeV6XL7UFtRhAyTL5pBycO0pblYtoFvrndjTsEUXLOk1OhSUsLsqcxT/UM40nXacivQU2KYtjQXSzbwDzv78ebhLnzj8nLbHndq9lSmy+MDwPm3kzBtaT6W7H5b6j3IzhTcurrc6FJSxuypTJfbi5ysDCybP8PoUigNwmnLleWFTFuaiOUa+OmhUTzTeBzXXTIXxdPt/e73WhOnMl0eH5aXzUBuFl9G210goPje083BtOUtTFuaieV+E8+924q+oVFssOCiDbGqM2kqc2DYj72tPZx/O8SjO46i/sgp3Hv9UlTMyje6HBrDUg1cVbGl3oOl8wqwstz+s1ezpjKbj3djxK88/4kD7G/vxS9fOci0pUlZqoHvOurFwY4+bLjCHuc9iYYZU5nhE1jxFLL2xrSl+SXcwEUkU0TeFZEXk1FQJFvqPZgxNRtfXD4/1U9lGmZMZbo8PiwunYbCPGuvdygiC0TkdRHZLyL7ROSO0O0zReRVETkc+uzI/6nOpi2/yrSlWSVjD/wOAPuT8DgRnegZxMv7TuDm2jJHHX9qtlSmP6Bo9PjsMv8eBXC3qlYDWAPg2yKyBMA9ALap6iIA20LXHeXtUNrytjXl+EwV05ZmlVADF5EyAJ8H8EhyypnY7985hoAqbrPwkmnxMFsq81BHH/oGR20x/1bVdlXdHbrch+COyHwAXwKwKXS3TQBuMKRAg/ScGcHdfwymLX943RKjy6EIEt0DfxDAvwOYsLOIyO0i4hIRV2dnZ1xPMjwawO93HcPVi4sd+S64mVKZrrMnsLLFHvhZIlIJYAWAXQBKVbUdCDZ5AOPugiZj2zajH2/di86+ITxwM9OWZhd3AxeRLwA4qaqNke6nqg+paq2q1hYXF8f1XC/vO4Gu/iFsuLIyru+3unAqc5sJxigujw+lBbkoK7Lu2qPnE5FpAJ4BcKeq9kb7fcnYts1ma1MrXgilLZcvKDS6HJpEInvgVwH4ooi4ATwJYK2IPJ6Uqs6z+W03Kmbl4dOL7PFHEqu8nCxcuXAWth3oMDyVGVzAYaZtjkgQkWwEm/cTqvps6OYOEZkb+vpcAMb/z5kGTFtaT9wNXFW/r6plqloJ4FYAr6nqbUmrLGRfWw9cHh/Wr6lw9Fnv6qpL4TllbCqzrXsArd0Dtph/A4AE/xd6FMB+Vf31mC+9AGBj6PJGAFvTXVu6MW1pTab/LW2p92BKdgZuWrXA6FIMZYZU5rkTWNlm/n0VgPUIvnpsCn1cB+A+ANeIyGEA14Su21o4bfmT65c48n0mq8pKxoOo6nYA25PxWGP1nBnB802tuKFmPmbk2WfJtHiMTWX+86eNeXnrcnuRn5OJqjn2WEBDVXcAmOhlXV06azHS2LTlzbXO3lGyGlPvgf+xsQWDIwGsd8B5T6JhdCqzwe3DivIivry2kcERP+56imlLqzLtX2IgoNiy04PaiiIsncdTlgLBsxMalcrsHRzBgRO9XIHeZu7/20EcOMG0pVWZtoG/cbgTnlNnuPc9xqUGpjLfPdYNVVvNvx3v7Q+68PCbTFtamWkb+JZ6D2ZPy8Xnls01uhTTMDKV6XJ7kZkhqOGxwbZwNm05m2lLKzNlAz926gxeP3gSX1+9ADlZpizRMOFUpivNqcwGtxdL5hYgPzcp73uTwc6mLbm2paWZsjs+vsuDDBF8/XKOT853bq3M9I1RRvwBNLV0c/5tE0xb2ofpGvjAsB9PNbTgs0tLMWfGFKPLMR0jUpn72noxOBLg/NsG2pi2tBXTNfA/N7ehZ2AEG66oNLoU00p3KjM8rrFLAtOpAgHF3Uxb2oqpfoOqik31biwunYbLL+De3kTSncpscHtRPjMPJQV8RWRlTFvaj6ka+O5j3djX1osNV1QyUBBBOJX5WhoauGp4AQfufVsZ05b2ZKoGvrnejem5WbhxhXOWTItXXXUJXB5vylOZ7lNn0NU/zPm3hTFtaV+maeCdfUP463vt+MqqMh6qFoV0rZXZwPm35TFtaV+maeBPvnMMI35l8jJK6UplutxeFOZlY2HxtJQ+D6XG2x9ybUs7M0UDH/UH8MSuY/jkotlsFFEam8oc8aculeny+FBbUeToc7FbVc+ZEdz9dDMumMW0pV2ZooG/+n4HTvQOYr3DFixO1NrwWplHU5PKPNU/hCOdp+2yAr3jMG1pf6Zo4JvrPZhfOBV11aVGl2Ipn0xxKjO8gAPn39YTTlt+l2lLWzO8gY/4AygpyMX/vKoSmXyZHpNUpzJdbi9ysjJwSRlP52sl4bTlivJC/CvTlrZmeAPPzszAb25dgf/9yQuNLsWSUpnKdHl8WF42A7lZfPltFeG0pT+geJBpS9vjb9fiwqnMbUkeowwM+7G3tYfzb4t57K1g2vJepi0dgQ3c4uYVTkX13IKkN/Dm490Y8Svn3xZy4EQvfvEy05ZOwgZuA+tSkMpsDL2BuYoN3BIGR/y480mmLZ2GDdwGUpHKbHB7sbh0GgrzcpL2mJQ64bTlL756CdOWDsIGbgOXzp+B2dOSl8r0B4InsFpVwfm3FYTTlt+4vBxrq3gorpOwgdtARoZgbVVx0lKZhzr60Dc4ist4BkLT6xkYwfeebkblrHz88PPVRpdDacYGbhN11aVJS2WGAzx2PwOhiDwmIidFZO+Y234qIq0i0hT6uM7IGifzk6170dE3hAdvqUFeDk8C5zRs4DaRzFSmy+1FaUEuyoqmJqEyU/sdgGvHuf0BVa0Jffw1zTVFbWtTK7Y2cW1LJ2MDt4lkpjJdbh9qK2ba/kgGVf0HgNScSCbFmLYkgA3cVs6lMk/H/Rht3QNo7R5w+go83xGRPaERy4Q/CBG5XURcIuLq7OxMW3FMW1IYf/M2svZsKrMj7sdwyvw7gt8CWAigBkA7gPsnuqOqPqSqtapaW1xcnKbyzqUtf/IFpi2djg3cRuYnIZXpcnuRn5OJqjnTk1iZdahqh6r6VTUA4GEAq42uaaxw2nJddSluuYxpS6djA7eZRFOZDW4fVpQXOfZluYjMHXP1RgB7J7pvug2Nnktb/vwrTFsSG7jtJJLK7B0cwcETvY6Zf4vIHwDUA7hYRI6LyDcB/EJE3hORPQA+A+AuQ4sc4/6/HWLakj6CB47aTDiVuW3/Sdy4oiym7333WDcC6pz5t6p+bZybH017IVF4+8MuPPzmEaYt6SO4B24z4VTmG4diT2W63F5kZghqeEyxqTBtSRNhA7ehuupS9A3GnspscHuxZG4B8nP5wsxMwmnLB5i2pPPE3cBFZIGIvC4i+0Vkn4jckczCKH7xpDJH/AE0tXQ7Zv5tFS80t2FrUxu+u3YRXxnRxySyBz4K4G5VrQawBsC3RWRJcsqiRMSTytzX1ovBkYBj5t9W0NY9gB899x5WlBfi259h2pI+Lu4Grqrtqro7dLkPwH4A85NVGCWmrqokplSmyx0ct3AFHnMIBBTf+2MzRpm2pAiSslWISCWAFQB2jfM1Q+LGTre2OnikQrSpTJfbh/KZeSgpmJLKsihKj711FG9/yLQlRZZwAxeRaQCeAXCnqvae/3Wj4sZOF0sqU1Xh8ng5/zYJpi0pWgk1cBHJRrB5P6GqzyanJEqWaFOZ7lNn0NU/zPm3CZxLW2bhPqYtaRKJHIUiCIYe9qvqr5NXEiXL2qoSBBR441Dk0VUD59+mcS5teSlmM21Jk0hkD/wqAOsBrLXK6iVOs7ysMLRWZuQ5eKPbh8K8bCwsnpamymg89R+eYtqSYhJ3KkBVdwDg6zsTC6cyX9p7AiP+ALInOJKhweNFbUURMjL46zRKz8AI7n66iWlLigmPTbK5yVKZp/qHcKTzNFegNxjTlhQPNnCb+8RFkVOZ5xZw4PzbKExbUrzYwG0uPzcLV1w4cSqz0eNDTlYGLimbYUB1xLQlJYIN3AHWVU+cymxwe7G8bAZyszINqMzZxqYtH7iZaUuKHbcYB5golTk44sfe1h7Ovw0yNm1ZOZtpS4odG7gDTJTKbG7pxohfOf82wIETvfjFK0xbUmLYwB0inMrsPnMulRl+A3MVAzxpdTZtOYVpS0oMG7hDhFOZ2w+eS2U2uL1YXDoNhXk5BlbmPExbUrKwgTvE+anMQEDR6PFx/p1m4bTl15m2pCRgA3eI89fKPHSyD32Do5x/p9HYtOWPmLakJGADd5CxqcwGdzjAwz3wdLmXaUtKMm5FDvKJi2YjJzMD2w6cRFf/EEqm56KsaKrRZTnCC81teL6pDXetW8y0JSUNG7iD5Odm4YqFs7Btf0fo8MGZPAIiDZi2pFThCMVh1lWXwH3qDFq7Bxy/Ao+IPCYiJ0Vk75jbZorIqyJyOPQ5oR8S05aUStyaHCacygQ4/wbwOwDXnnfbPQC2qeoiANtC1+MWTlv+mGlLSgE2cIcJpzLzcjJRNWe60eUYSlX/AeD88+x+CcCm0OVNAG6I9/EPnug7m7a8lWlLSgHOwB3oP669GO09g3w5P75SVW0HAFVtF5GSie4oIrcDuB0AysvLP/b1DAEuv2Am05aUMmzgDnT1xRP2JIqBqj4E4CEAqK2t/di5eheVTseWb16e9rrIObgLRvRRHSIyFwBCn8dfCYPIBNjAiT7qBQAbQ5c3AthqYC1EEbGBk2OJyB8A1AO4WESOi8g3AdwH4BoROQzgmtB1IlPiDJwcS1W/NsGX6tJaCFGcuAdORGRRbOBERBbFBk5EZFFs4EREFiWqH8sfpO7JRDoBeCb48mwAXWkrJnlYd3pFqrtCVYvTWUxYhG3bqj9nwLq127HucbfttDbwSETEpaq1RtcRK9adXlar22r1jmXV2p1UN0coREQWxQZORGRRZmrgDxldQJxYd3pZrW6r1TuWVWt3TN2mmYETEVFszLQHTkREMWADJyKyKMMbuIhcKyIHReQDEUlo/cF0Gm9BXCsQkQUi8rqI7BeRfSJyh9E1RUNEpojIOyLSHKr7Z0bXNBlu2+nj1O3a0Bm4iGQCOITgaTuPA2gA8DVVfd+woqIkIp8C0A9gs6ouM7qeaIUWKZirqrtFZDqARgA3mP1nLsE1yfJVtV9EsgHsAHCHqu40uLRxcdtOL6du10bvga8G8IGqHlHVYQBPIriorOlNsCCu6alqu6ruDl3uA7AfwHxjq5qcBvWHrmaHPsz8Djy37TRy6nZtdAOfD6BlzPXjsMAP3S5EpBLACgC7DC4lKiKSKSJNCC5z9qqqmrlubtsGcdJ2bXQDH2+pbjPvVdmGiEwD8AyAO1W11+h6oqGqflWtAVAGYLWImPnlPbdtAzhtuza6gR8HsGDM9TIAbQbV4hihWdszAJ5Q1WeNridWqtoNYDuAa42tJCJu22nmxO3a6AbeAGCRiFwgIjkAbkVwUVlKkdCbJo8C2K+qvza6nmiJSLGIFIYuTwWwDsABQ4uKjNt2Gjl1uza0gavqKIDvAHgFwTcdnlbVfUbWFK0JFsS1gqsArAewVkSaQh/XGV1UFOYCeF1E9iDYHF9V1RcNrmlC3LbTzpHbNaP0REQWZfQIhYiI4sQGTkRkUWzgREQWxQZORGRRbOBERBbFBk5EZFFs4EREFvX/AQakEqag8CvOAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "#plot 1:\n",
    "x = [0, 1, 2, 3]\n",
    "y = [3, 8, 1, 10]\n",
    "\n",
    "plt.subplot(1, 2, 1)\n",
    "plt.plot(x,y)\n",
    "\n",
    "#plot 2:\n",
    "x = [0, 1, 2, 3]\n",
    "y = [10, 20, 30, 40]\n",
    "\n",
    "plt.subplot(1, 2, 2)\n",
    "plt.plot(x,y)\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "id": "840fadd3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAKg0lEQVR4nO3dX4yld13H8c/XLgilENFOFWmXgQRLSC+AjP+o0dhKrNZYSHrRGkg16F5VQU3I6k293AtDMNFINogWRRoDJBJrEFIk/iONu6VG2hXBsmKl0kVM/BNMaf16sadJGdqZ2XNO9/S7vF7JZuY8c+Y835ycvOe3z3memeruADDPN216AACWI+AAQwk4wFACDjCUgAMMdeh87uzSSy/t7e3t87lLgPFOnjz5pe7e2r39vAZ8e3s7J06cOJ+7BBivqv75ybY7hAIwlIADDCXgAEMJOMBQAg4wlIADDLVvwKvq3VX1cFV96gnbvrWqPlpVn1l8fOHTOyYAux1kBf57Sa7bte1okru6++VJ7lrcBuA82jfg3f0XSb68a/MNSW5ffH57ktevdywA9rPslZjf3t0PJUl3P1RVlz3VHavqSJIjSXL48OEldwdMtn30zk2PsHGnj12/9sd82t/E7O7j3b3T3TtbW193KT8AS1o24F+sqhclyeLjw+sbCYCDWDbgH0pyy+LzW5L88XrGAeCgDnIa4fuSfCLJlVX1YFW9OcmxJK+rqs8ked3iNgDn0b5vYnb3zU/xpWvXPAsA58CVmABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwy1UsCr6her6r6q+lRVva+qnrOuwQDY29IBr6oXJ/mFJDvdfVWSi5LctK7BANjbqodQDiV5blUdSnJxki+sPhIAB3Fo2W/s7n+tql9P8vkkX0nyke7+yO77VdWRJEeS5PDhw8vujhVtH71z0yNs1Olj1296BFi7VQ6hvDDJDUlemuQ7kzyvqt64+37dfby7d7p7Z2tra/lJAfgaqxxC+ZEkn+vuM9391SQfTPLa9YwFwH5WCfjnk3xfVV1cVZXk2iSn1jMWAPtZOuDdfXeS9ye5J8nfLx7r+JrmAmAfS7+JmSTdfVuS29Y0CwDnwJWYAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDLVSwKvqW6rq/VX1D1V1qqq+f12DAbC3Qyt+/28k+XB331hVz05y8RpmAuAAlg54Vb0gyQ8m+ekk6e5HkjyynrEA2M8qh1BeluRMkt+tqk9W1buq6nlrmguAfawS8ENJXpPkt7v71Un+J8nR3XeqqiNVdaKqTpw5c2aF3QHwRKsE/MEkD3b33Yvb78/ZoH+N7j7e3TvdvbO1tbXC7gB4oqUD3t3/luRfqurKxaZrk9y/lqkA2NeqZ6H8fJL3Ls5AeSDJz6w+EgAHsVLAu/veJDvrGQWAc+FKTIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChVg54VV1UVZ+sqj9Zx0AAHMw6VuBvSXJqDY8DwDlYKeBVdXmS65O8az3jAHBQq67A35HkbUn+76nuUFVHqupEVZ04c+bMirsD4HFLB7yqfiLJw919cq/7dffx7t7p7p2tra1ldwfALquswK9O8pNVdTrJHUmuqao/WMtUAOxr6YB396909+XdvZ3kpiQf6+43rm0yAPbkPHCAoQ6t40G6++NJPr6OxwLgYKzAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgqLX8PvDzYfvonZseYaNOH7t+0yMAzzBW4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwy1dMCr6oqq+vOqOlVV91XVW9Y5GAB7W+Uv8jya5Je7+56qen6Sk1X10e6+f02zAbCHpVfg3f1Qd9+z+Py/kpxK8uJ1DQbA3tZyDLyqtpO8OsndT/K1I1V1oqpOnDlzZh27AyBrCHhVXZLkA0ne2t3/ufvr3X28u3e6e2dra2vV3QGwsFLAq+pZORvv93b3B9czEgAHscpZKJXkd5Kc6u63r28kAA5ilRX41UnelOSaqrp38e/H1zQXAPtY+jTC7v6rJLXGWQA4B67EBBhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoZb+feDwjWT76J2bHmGjTh+7ftMj8CSswAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGWingVXVdVX26qj5bVUfXNRQA+1s64FV1UZLfSvJjSV6Z5OaqeuW6BgNgb6uswL8nyWe7+4HufiTJHUluWM9YAOynunu5b6y6Mcl13f2zi9tvSvK93X3rrvsdSXJkcfPKJJ9eftyNujTJlzY9xGCev9V4/lYz/fl7SXdv7d64yl+lryfZ9nU/Dbr7eJLjK+znGaGqTnT3zqbnmMrztxrP32ou1OdvlUMoDya54gm3L0/yhdXGAeCgVgn43yZ5eVW9tKqeneSmJB9az1gA7GfpQyjd/WhV3Zrkz5JclOTd3X3f2iZ75hl/GGjDPH+r8fyt5oJ8/pZ+ExOAzXIlJsBQAg4wlIAfQFW9oaq6ql6x6VmmqarHqureqvq7qrqnql676ZkmqarvqKo7quqfqur+qvrTqvquTc81xRNef/ctXoO/VFUXTPccAz+AqvqjJC9Kcld3/9qGxxmlqv67uy9ZfP6jSX61u39ow2ONUFWV5G+S3N7d71xse1WS53f3X25ytil2vf4uS/KHSf66u2/b7GTrccH8JHq6VNUlSa5O8uacPVWS5b0gyX9seohBfjjJVx+Pd5J0973ivZzufjhnrwq/dfHDcbxVrsT8RvH6JB/u7n+sqi9X1Wu6+55NDzXIc6vq3iTPydn/xVyz2XFGuSrJyU0PcSHp7gcWh1AuS/LFTc+zKivw/d2cs7+oK4uPN29wlom+0t2v6u5XJLkuyXsulNUPY10wrz8r8D1U1bfl7IrxqqrqnL1gqavqbe3Ng3PW3Z+oqkuTbCV5eNPzDHBfkhs3PcSFpKpeluSxXCCvPyvwvd2Y5D3d/ZLu3u7uK5J8LskPbHiukRZn8VyU5N83PcsQH0vyzVX1c49vqKrvripvAi+hqraSvDPJb14oCzAr8L3dnOTYrm0fSPJTSbyRdDCPHwNPzv7X9ZbufmyD84zR3V1Vb0jyjsVfvPrfJKeTvHWTcw3z+OvvWUkeTfL7Sd6+0YnWyGmEAEM5hAIwlIADDCXgAEMJOMBQAg4wlIADDCXgAEP9Py5kC1E3kOfwAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "x = [\"A\", \"B\", \"C\", \"D\"]\n",
    "y = [3, 8, 1, 10]\n",
    "\n",
    "plt.bar(x,y)\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}